SANMOS
AC SERVO SYSTEMS
TYPE S
Serial Interface Built-in Positioning Function Model
For Rotary Motor
Instruction Manual

The fourth edition (D)

- 1-8,1-9,

3-1 to 3-4, 3-21, 3-22
Materials-58

- Changes as follows: Sumitomo 3M Ltd. --> 3M Japan Limited
- 3-7, -8
- Adds the notes for general output diode.
- 3-27
- Adds the notes for selection of RJ-45 modular connector.
- 3-80
- Encoder clearing procedure
- Changes the values in the table of turning on an encoder clearing, as follows:

$$
0 \times 17->0 \times 10,0 \times 3 \mathrm{C}->0 \times 8 \mathrm{D}, 0 \times 3 \mathrm{E}->0 \times \mathrm{FF}
$$

- Changes the values in the table of turning off an encoder clearing, as follows: 0×17--> 0x10, 0x7D --> 0xCC, 0xCE --> 0x0F
- 4-8
- Translates again to the sentence following "*2".
- 4-10
- Changes the notes for "*2".
- 4-38
- Changes a part of procedure of the home position setting.
- 8-30
- Changes the title as follows: Corrective Actions for Problems During Operation --> Inspection
- 8-30, Materials-63
- Changes as follows: ER3V --> ER3VLY
- Changes the company name as follows: TOSHIBA LIFESTYLE PRODUCTS \& SERVICES CORPORATION
- 9-1
- Changes the mass of RS1*30*F, as follows: 9.8 --> 10.5
- Materials -17
- Changes the mass as follows: 4.1 kg --> 3.0kg

【Safety Precautions】

This chapter is a summary of the safety precautions regarding the use of the R-series type-S, Serial interface built-in positioning type amplifier.
Please read this entire manual carefully prior to installing, operating, performing maintenance or inspecting this device to ensure proper use.

Use this device only after learning about its operation, safety information, and the precautions related to its use. After reading the User Manual, etc., keep it in a location where it is always available to the user for easy reference.

The R-series servo amplifiers and servo motors were designed for use with general industrial equipment. The following instructions should be followed:

- Read the User Manual carefully before any installation or assembly work to ensure proper use.
- Do not perform any retrofitting or modification of the product.
- Consult with your sale representatives or a trained professional technician regarding the installation and maintenance of these devices.
- Special consideration, such as redundant services or an emergency generator, is required when operating, maintaining and controlling devices in certain applications related to human safety or public functions. Contact your distributor or sales office if you intend to use these devices in applications such as;
※ In medical instruments or systems used for life support;
※ With control systems for trains or elevators, the failure of which could cause bodily injury;
※ In computer systems of social or public importance;
※ In other equipment or systems related to human safety or public infrastructure.
- Additionally, please contact your distributor or sales office if the device is to be used in an environment where vibration is present, such as in-vehicle or transport applications.

This documentation uses the following annotation. Make sure to strictly follow these safety precautions.

Safety Precautions and symbols

! Danger

Do not use this device in explosive environment.

Injury or fire could otherwise result.

Do not perform any wiring, maintenance or inspection when the device is hot-wired. After switching the power off, wait at least 5 minutes before performing these tasks.

Electric shock could otherwise result.

The protective ground terminal ($(\underset{\odot}{ }$) should always be grounded to the control box or equipment. The ground terminal of the motor should always be connected to the protective ground
terminal (©

Electric shock could otherwise result.

Do not touch the inside of the amplifier.

Electric shock could otherwise result.

Only technically qualified personnel should transport, install, wire, operate, or perform maintenance and inspection on this device.

4
Electric shock, injury or fire could otherwise result.

Do not damage the cable, do not apply unreasonable stress to it, do not place heavy items on it, and do not insert it in between objects.

Electric shock could otherwise result.

Danger

Wiring should be done based on the wiring diagram or the user manual.

Electric shock or fire could otherwise result.

Do not touch or get close to the terminal and the connector while the device is powered up.

Electric shock could otherwise result.

Do not touch the rotating part of the motor during operation.

Bodily injury could otherwise result. while the device is powered up.

Electric shock could otherwise result.

\triangle Caution

Please read the User Manual carefully before installation, operation, maintenance or inspection, and perform these tasks according to the instructions.

Electric shock, injury or fire could otherwise result.

Do not use the defective, damaged and burnt amplifier or the motor.

Injury or fire could otherwise result.

Be careful of the high temperatures generated by the amplifier/motor and the peripherals.

Burn could otherwise result.

Do not use the amplifier or the motor outside their specifications.

A
Electric shock, injury or damage to the device could otherwise result.

Use the amplifier and motor together in the specified combination.
Nㅗㄴ
Fire or damage to the device could otherwise result.

Open the box only after checking its top and bottom location.
A
Bodily injury could otherwise result.

A Caution

Verify that the products correspond to the	Do not impress static electricity, the high order sheet/packing list. If the wrong product is installed, injury or votc. to the cable for encoders of the damage could result. servo motor.
Injury or damage could result.	Damage to the device could otherwise result.
Do not measure the insulation resistance and the pressure resistance.	Wiring should follow electric equipment technical standards and indoor wiring regulations.
otherwise result.	

\triangle Caution

There is no safeguard on the motor. Use an over-voltage safeguard, short-circuit breaker, overheating safeguard, and emergency stop to ensure safe operation.

Injury or fire could otherwise result.

信 otherwise result.

Trial runs should be performed with the motor in a fixed position, separated from the mechanism. After verifying successful operation, install the motor on the mechanism.

Bodily injury could otherwise result.

In the case of an alarm, first remove the cause of the alarm, and then verify safety. Next, reset the alarm and restart the device.

Bodily injury could otherwise result.

Avoid getting close to the device, as a momentary power outage could cause it to suddenly restart (although it is designed to be safe even in the case of a sudden restart).

A
Bodily injury could otherwise result.

Be careful during maintenance and inspection, as the body of the amplifier becomes hot.

Burn could otherwise result.

Do not touch the radiation fin of the amplifier, the regenerative resistor, or the motor while the device is powered up, or immediately after switching the power off, as these parts generate excessive heat.

IIII Burn could otherwise result.

Do not perform extensive adjustments to the device as they may result in unstable operation.

A
Bodily injury could otherwise result.

The holding brake is not to be used as a safety stop for the mechanism. Install a safety stop device on the mechanism.

A
Bodily injury could otherwise result.

Make sure the input power supply voltage is in or less than the specification range.

4
Damage to the device could otherwise result

Standard specification servo amplifiers have a dynamic brake resistor. Do not rotate the motor continuously from the outside when the amplifier is not powered on, because the dynamic brake resistor will heat up, and can be dangerous.

Δ
Fire or burn could otherwise result.

It is recommended to replace the electrolytic capacitors in the amplifier after 5 years, if used at an average temperature of $40^{\circ} \mathrm{C}$ year round.

Damage to the device could otherwise result.

\triangle Caution

Please contact your distributor or sales office if repairs are necessary.
Disassembly could render the device inoperative.

Damage to the device could otherwise result.

Do not hold the device by the cables or the shaft while handling it.

Damage to the device or bodily injury could otherwise result.

Make sure the device does not fall, overturn, or move inadvertently during transportation.

1Bodily injury could otherwise result.

If the amplifier or the motor is no longer in use, it should be discarded as industrial waste.

Q Prohibited

Do not store the device where it could be exposed to rain, water, toxic gases or other liquids.

Damage to the device could otherwise result.

Do not overhaul the device.

0
Fire or electric shock could otherwise result.

The built-in brake is intended to secure the motor; do not use it for regular control.
Damage to the brake could otherwise result.

0
Damage to the device could otherwise result.

Do not remove the nameplate cover attached to the device.

! Mandatory

Avoid direct sunlight and keep it by temperature and humidity within the range of the specification. $\left\{-20^{\circ} \mathrm{C}\right.$ to $+65^{\circ} \mathrm{C}$, below $90 \% \mathrm{RH}$ (non-condensing) $\}$.

Install an external emergency stop circuit and enable it to stop the device and cut off the power supply immediately. Install an external protective circuit to the amplifier to cut off the power from the main circuit in the case of an alarm.

(1)

Motor interruption, bodily injury, burnout, fire and secondary damages could otherwise result.

Follow the directions written on the outside box. Excess stacking could result in collapse.
! Bodily injury could otherwise result.

Please contact our office if the amplifier is to be stored for a period of 3 years or longer. The capacity of the electrolytic capacitors decreases during long-term storage, and could cause damage to the device.

(1)
Damage to the device could otherwise result.

Operate within the specified temperature and humidity range
Amplifier:
Temperature $0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$,
Humidity below 90% RH(non-condensing). Motor:
Temperature $0^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$, Humidity below 90% RH(non-condensing).
!
Burnout or damage to the device could otherwise result.

The motor angling bolts are used for transporting the motor. Do not use them for transporting the machinery, etc.
(!
Damage to the device or bodily injury could otherwise result.

［Table of Contents］

［1 Prior to use］
Product verification 1－1
Servo motor model number 1－2
Servo amplifier model number 1－4
Servo amplifier part names 1－8
Servo motor part names 1－10
［2 Installation］
Servo amplifier 2－1
Mounting direction and location 2－3
Arrangement within the control machine 2－3
Servo motor． 2－5
Waterproofing and dust proofing 2－5
Protective cover installation 2－5
Gear installation 2－6
Integration with the target machinery． 2－6
Allowable bearing load 2－8
Cable installation considerations 2－9
［3 Wiring］
Packaged Wiring Diagram 3－1
High Voltage Circuit；Terminal Name and Function 3－5
Wiring Example of High Voltage／Protective Circuit 3－7
Low Voltage Circuit／Description of CN Terminal 3－9
Low Voltage Circuit／CN1 Overall Wiring 3－11
Low Voltage Circuit／Wiring Example of CN1 Input Circuit3－12 Low Voltage circuit／CN2 Wiring • Wire－saving incremental encoder 3－14
Low Voltage circuit／CN2 Wiring •
Battery backup method absolute encoder and others． 3－15
Low Voltage circuit／CN2 Wiring •
Absolute encoder with incremental output 3－16
Low Voltage circuit／CN2 Wiring •
Request method absolute encoder 3－17
Power Supply • Peripherals 3－18
Wire diameter 3－20
How to process CN1／CN2 shields 3－22
MODBUS Communication：Overview 3－23
MODBUS Communication：Communication Procedure• 3 3－29
MODBUS Communication：Frame Composition 3－33
MODBUS Communication：Parameter 3－35
MODBUS Communication：Monitor Data 3－63
MODBUS Communication：Point Data 3－69
MODBUS Communication：Communication Example 3－73
MODBUS Communication ：Alarm Clear Procedure． 3－79
［4 Positioning Function］
Parameter GroupD List 4－1
Explanation of Parameter GroupD 4－5
Explanation of Point Data 4－16
Performance by External Operation Input 4－31
External data setup 4－39
Read this instruction to use positioning functions for the first time 4－40
Description of infinite motor rotation specification 4－47
Explanation of JOG with specific position stop 4－50
［5 Parameters］
Parameter List 5－1
Parameter setting value【Group0】 5－6
Parameter setting value【Group1】 5－7
Parameter setting value【Group2】 5－9
Parameter setting value【Group3】 5－10
Parameter setting value【Group4】 5－12
Parameter setting value【Group8】 5－13
Parameter setting value【Group9】 5－15
Parameter setting value【GroupA】 5－17
Parameter setting value【GroupB】 5－23
Parameter setting value【GroupC】 5－24
Parameter setting value【GroupD】 5－25
System parameter setting value 5－26
［6 Operations］
Procedure prior to operation 6－1
Confirmation of Installation and Wiring 6－3
Confirmation \＆Change of servo amplifier specification 6－4
Confirmation \＆Change of servo motor encoder specification 6－5
Confirmation \＆Change of servo motor model number 6－6
Confirmation of I／O signal and Unit operations 6－7
Operation sequence 6－8
Error \＆Sequence． 6－11
Explanation of state display mode 6－12
［7 Adjustment • Functions］
Servo gain tuning 7－1
Functions of Group8 7－7
Functions of Group9 7－12
Functions of GroupB 7－14
Functions of GroupC 7－17
Description of monitor 7－19
Description of operation tracing function 7－23
[8 Maintenance]
Trouble Shooting 8-1
Alarm List 8-3
Troubleshooting when alarms occur 8-5
Troubleshooting when errors occur 8-27
Troubleshooting by history 8-28
About Code of status history 8-29
Inspection/Parts overhaul. 8-30
[9 Specifications]
Servo amplifier 9-1
Servo motor general specifications 9-4
Mechanical specifications of servo motor 9-5
Holding brake specifications 9-7
[Materials]
[Selection Details]
Time of Acceleration and Deceleration/Allowable
Time of Acceleration and Deceleration/Allowable
Repetition- 1
Allowable Repetition 2
Allowable Repetition/Loading Precaution 3
Dynamic brake 4
Regeneration Process 7
Calculation Method of Regeneration Power by Operations along Horizontal Axis 8
Calculation Method of Regeneration Power by Operations along Vertical Axis 9
Confirmation Method of Regeneration Power 10
External Regenerative Resistor 11
External Regenerative Resistor Dimension 15
[Global standards]
Global standards conformity 18
Compliance with EC Directives 20
[Dimension]
Servo amplifier 24
Servo motor 33
[Servo motor data sheet]
Characteristics table 39
Velocity - Torque characteristics 44
Overload characteristics 52
[Options]
Metal mounting fittings 59
Monitor Box 63
Lithium battery•EMC kit 64
[Encoder clear]
Encoder clear/ reset method 65

[Prior to Use]

Product verification 1-1
Servo motor model number 1-2
Servo amplifier model number 1-4
Servo amplifier part names 1-8
Servo motor part names 1-10

- Verify the followings when the product arrives. If you find any discrepancy, contact your distributor or sales office.
- Verify that the model number of the servo motor or servo amplifier is the same as ordered.
(The model number is located on the main nameplate, following the word "MODEL".)
- Verify that there are no abnormalities, such as damages to the exterior of the device, or missing accessories.
- Verify that there are no loose screws on the servo motor or servo amplifier.

Servo motor

Interpretation of the serial number

Month (2 digits) + Year (2 digits) + Day (2 digits) + Serial number (4 digits) + Revision ("A" is abbreviated)

1. Prior to Use

[Servo motor model number]

- Interpretation of servo motor model number

- Encoder specifications

Type	Within 1 rotation	Multiple rotation	Notes	
PA035C	$131072(17 \mathrm{bit})$	$65536(16 \mathrm{bit})$	Battery backup method absolute encoder	
PA035S	$131072(17 \mathrm{bit})$	-	Absolute encoder for incremental system	\vdots

To the customers using "Absolute encoder for incremental system";
Set parameters values for your servo amplifier indicated below by surely using the setting values in the table below without fail.

General parameter

Group	Page	Symbol	Name	Setting value	Contents
C	00	ABS/INCSYS	Position detection system choice	00:_Absolute	Absolute system
C	08	ECLRFUNC	Absolute Encoder Clear Function Selection	01:_Status	Clear Only Encoder Status
D	41	Sw2	Function switch 2	Bit4 =1: Available	Return-to-origin function of absolute encoder is necessary to settle coordinate.

1. Prior to Use

- Interpretation of servo motor model number

- Encoder specifications
- Incremental encoder

Type	Resolution	Flange angle dimensions	Notes
PP031	$8000 / 8192 \mathrm{P} / \mathrm{R}$	40 mm Min	Wire-saving incremental encoder
PP038	$4096 \sim 25000$ P/R	42 mm Min	Wire-saving incremental encoder
PP062	$8000 / 8192 / 20000 / 32768 / 40000 \mathrm{P} / \mathrm{R}$	72 mm Min	Wire-saving incremental encoder

- Absolute encoder

| Type | Within 1 rotation | Multiple rotation | | |
| :---: | :---: | :---: | :--- | :--- | :--- |
| PA035C | 131072(17bit) | 65536(16bit) | Battery backup method absolute encoder | |
| PA035M | 8192(13bit) | - | Absolute encoder with incremental output | ! |
| RA062C | $131072(17 \mathrm{bit})$ | 8192(13bit) | Absolute encoder without battery | |

A
To the customers using "Battery backup method absolute encoder" with incremental system, See the parameter set values for your servo amplifier in the table below and make sure to use them.
General parameter

Group	Page	Symbol	Name	Setting value	Contents
C	00	ABS/INCSYS	Position detection system choice	01:_Incremental	Absolute system
C	08	ECLRFUNC	Absolute Encoder Clear Function Selection	$01:$ Status	Clear Only Encoder Status
D	41	Sw2	Function switch 2	Bit4 =1: Available	Return-to-origin function of absolute encoder is necessary to settle coordinate.

1. Prior to Use

[Servo amplifier model number]
Interpretation of servo amplifier model number (Full number)

The design order is noted by alphabetical characters at the end of the Lot Number on the nameplate.

- Code for combined motor type

AC200V input								
Combined servo amplifier	$\begin{gathered} \hline \text { Servo motor } \\ \text { model } \\ \text { number } \\ \hline \end{gathered}$	Motor code	Combined servo amplifier	$\begin{gathered} \hline \text { Servo motor } \\ \text { model } \\ \text { number } \\ \hline \end{gathered}$	Motor code	Combined servo amplifier	Servo motor model number	Motor code
RS1L01A RS1A01A RS1M01A RS1B01A	Q1AA04003D	31	RS1L05A RS1A05A RS1M05A RS1B05A	Q1AA10100D	37	RS1L15A RS1A15A RS1M15A RS1B15A	Q1AA13400D	3F
	Q1AA04005D	32		Q1AA10150D	38		Q1AA13500D	3G
	Q1AA04010D	33		Q1AA12100D	3B		Q1AA18450M	3H
	Q1AA06020D	34		Q2AA08075D	4B		Q2AA18350H	4L
	Q2AA04006D	41		Q2AA08100D	4C		Q2AA18450H	4M
	Q2AA04010D	42		Q2AA10100H	4D		Q2AA18550R	4N
	Q2AA05005D	43		Q2AA10150H	4E		Q2AA22350H	4R
	Q2AA05010D	44		Q2AA13100H	4G		Q2AA22450R	4S
	Q2AA05020D	45		Q2AA13150H	4H		Q2AA22550B	4T
	Q2AA07020D	46		R2AA13120D	DD		Q2AA22700S	4 U
	Q2AA07030D	47		R2AAB8100F	DK		R2AA22500L	DM
	R2AA04003F	D1						
	R2AA04005F	D2						
	R2AA04010F	D3						
	R2AA06010F	D4						
	R2AA06020F	D5						
	R2AA08020F	DA						
RS1L03A RS1A03A RS1M03A RS1B03A	Q1AA06040D	35	RS1L10A RS1A10A RS1M10A RS1B10A	Q1AA10200D	39	$\begin{aligned} & \text { RS1L30A } \\ & \text { RS1M30A } \end{aligned}$	Q1AA18750H	3 J
	Q1AA07075D	36		Q1AA10250D	3A		Q2AA18550H	7M
	Q2AA07040D	48		Q1AA12200D	3C		Q2AA18750L	7N
	Q2AA07050D	49		Q1AA12300D	3D		Q2AA2211KV	7R
	Q2AA08050D	4A		Q1AA13300D	3E		Q2AA2215KV	7 S
	Q2AA13050H	4F		Q2AA13200H	4J			
	R2AA06040F	D6		Q2AA18200H	4K			
	R2AA08040F	D8		Q2AA22250H	4 P			
	R2AA08075F	D7		R2AA13200D	DG			
	R2AA13050D	DC						

- Code for combined encoder type

Wire-saving incremental encoder			
Encoder code	Measurement	Resolution [P/R]	Hard ID.
01	Optical	2000	
02	Optical	6000	A
B2	Optical	10000	A

Battery backup method absolute encoder Absolute encoder without battery							
Encoder code	Measurement	Transmission format		Resolution [P/R]	Multiple rotations	Hard. ID.	Remarks
A3	Optical	Half duplex start-stop synchronization	2.5M	17bit	16bit	A	
A4	Optical	Half duplex start-stop synchronization	4.0M	17bit	16bit	A	Applicable to options
A7	Resolver	Half duplex start-stop synchronization	2.5M	15bit	-8192	A	
A8	Resolver	Half duplex start-stop synchronization	2.5M	17bit	\sim	A	
A9	Resolver	Half duplex start-stop synchronization	4.0M	15bit	+8192	A	Applicable to options
AA	Resolver	Half duplex start-stop synchronization	4.0M	17bit	rotations	A	Applicable to options

Request method absolute encoder						
Encoder code	Measurement	Transmission format	Resolution $[P / R]$	Multiple rotations	Hard. ID.	Remarks
AB	Resolver	Full duplex Manchester 1.0M	15 bit	13 bit	H	
AC	Resolver	Full duplex Manchester 2.0M	15 bit	13 bit	H	

Absolute encoder with incremental output						
Encoder code	Measurement	Transmission format	Resolution [P/R]	Multiple rotations	Hard. ID.	Remarks
03	Optical	Full duplex Manchester 1.0M	Incremental:2048P/R Absolute:11bit	$13 b i t$	R	

1. Prior to Use

[Servo amplifier model number]
Interpretation of servo amplifier model number (Abbreviated number)

Power input, power part details			Model numbers by amplifier capacity		
Input voltage	Regenerative resistor	DB	$\begin{aligned} & 15 A \cdots R S 1 \square 01 \\ & \text { 30A } \cdots \mathrm{RS} 1 \square 03 \end{aligned}$	$\begin{array}{r} 50 \mathrm{~A} \cdots \mathrm{RS} 1 \square 05 \\ 100 \mathrm{~A} \cdots \mathrm{RS} 1 \square 10 \\ 150 \mathrm{~A} \cdots \mathrm{RS} 1 \square 15 \\ \hline \end{array}$	300A \cdot - RS1 $\square 30$
AC200V	Built-in	W	L	A	-
		W/O	M	B	-
	-	W	A	L	A
		W/O	B	M	B
AC100V	Built-in	W	N	-	
		W/O	P		
	-	W	E	-	
		W/O	F	-	

Refer to Chapters 5 and 6 for how to set parameters which have been set at the time of shipment, and to page 55 of the attached data for setting contents.

The design order is noted by alphabetical characters at the end of the Lot Number on the nameplate.

Motor setting and encoder type of abbreviated model numbers

Servo amplifier model number	Servo motor model number		Encoder
RS1 $\triangle 01 A F$	P50B03003D		
RS1 $\triangle 03 A F$	P50B07040D		
RS1 $\triangle 05 A F$	P50B08075D	Wire-saving incremental encoder 2000P/R	
RS1 $\triangle 10 A F$	P60B13200H		
RS1 $\triangle 15 A F$	P80B22350H		
RS1 $\triangle 30 A F ~$	P60B18750R		

Δ : Depends on input power voltage, regeneration resistance and dynamic brake resistance. In case of 200VAC input voltage, A, B, L and M will be filled in. In case of 100VAC input voltage, E, F, N and P will be filled in. (However, there are onlyRS1 $\triangle 01$ and RS1 $\triangle 03$.)

- RS1■05A口

1.Prior to Use

－Lead wire type
Q1ロOOO \triangle－\diamond
Q1ロA06OOO \square－$>$
Q1AA07000 \triangle ロ \diamond
Q2口A04OOO \triangle－\diamond
Q2口A05OOO \triangle－\diamond
Q2口A07OOO \triangle－\diamond
Q2AA08OOO \triangle ロ \diamond
R2口A04OOO \triangle ロ
R2ロA06OOO $\triangle \square \diamond$
R2AA08OOO \triangle ロ \diamond

－Cannon plug type

Servo motor power line connector

No Text on This Page.

[Installation]

- Servo amplifier 2-1
- Mounting direction and location 2-3
Arrangement within the control machine 2-3
Servo motor 2-5
- Waterproofing and dust proofing 2-5
- Protective cover installation 2-5
- Gear installation 2-6
Integration with the target machinery 2-6
- Allowable bearing load 2-8
- Cable installation considerations. 2-9
- Please note the following points regarding the servo amplifier installation location and mounting method.

Various precautions

The device should be installed on non-flammable surfaces only. Installation on or near flammable materials can cause fire.	Do not stand, put or drop heavy items on the servo amplifier.
Operate the device within the specified environmental conditions.	Do not drop the device or subject it to excessive shock.
Do not install or operate a damaged device or one with damaged parts; return it for repair immediately.	Make sure no screws or other conductive or flammable materials get inside the servo amplifier.
Contact your distributor or sales office if the servo amplifier was stored or out of use for an extended period of time. (three years or more as a standard) The capacity of an electrolytic condenser falls by prolonged storage.	

If enclosed in a cabinet

The temperature inside the cabinet can exceed the external temperature depending on the power consumption of the device and the size of the cabinet. Consider the cabinet size, cooling, and placement, and make sure the temperature around the servo amplifier does not exceed $55^{\circ} \mathrm{C}$. For longevity and reliability purposes it is recommended to keep the temperature below $40^{\circ} \mathrm{C}$.

If there is a vibration source nearby

Protect the servo amplifier from vibration by installing it on a base with a shock absorber.

If there is a heat generator nearby

If the ambient temperature may increase due to convection or radiation, make sure the temperature near the servo amplifier does not exceed $55^{\circ} \mathrm{C}$.

If corrosive gas is present

Long-term use may cause contact failure on the connectors and connecting parts. Never use the device where it may be exposed to corrosive gas.

If explosive or combustible gas is present

Never use the device where explosive or combustible gas is present. The device's relays and contacts, regenerative resistors and other parts can arc (spark) and can cause fire or explosion.

If dust or oil mist is present

The device cannot be used where dust or oil mist is present. If dust or oil mist accumulates on the device, it can cause insulation deterioration or leakage between the conductive parts, and damage the servo amplifier.

If a large noise source is present

[^0]- Mounting direction and location

Rear-mounting

Front panel mounting hardware

\rightarrow

Front-mounting

For metal fittings for front/rear mounting, refer to options (compatible with PY2 mounting).

- Arrangement within the control machine

- Leave at least 50 mm space above and below the servo amplifier to ensure unobstructed airflow from the inside of the servo amplifier and the radiator. If heat gets trapped around the servo amplifier, use a cooling fan to create airflow.
- The ambient temperature of servo amplifier should always become $55^{\circ} \mathrm{C}$ or less. In addition, in order to secure a long-life and high reliability, we recommend you to use temperature below $40^{\circ} \mathrm{C}$.
- Leave at least 10 mm space on both sides of the servo amplifier to ensure unobstructed airflow from the heat-sinks on the side and from the inside of the servo amplifier.
- If the R-series servo amplifier is installed on its side, make sure that the ambient temperature does not exceed $50^{\circ} \mathrm{C}$, and mount the back panel to a metal plate.
RS1 $\square 01$, RS1 $\square 03$, RS1 $\square 05: 2 \mathrm{~mm}$ or more of recommendation metal plate thickness
RS1 $\square 10$, RS1 $\square 15$, RS1 $\square 30: 5 \mathrm{~mm}$ or more of recommendation metal plate thickness
- For RS1 $\square 03 \cdot \operatorname{RS} 1 \square 05$, a cooling fan is attached at the side. Therefore, it is recommended that the servo amplifier be mounted in an arrangement as shown below.

- Please note the following regarding the installation location and mounting method for the servo motor.

The servo motor is designed for indoor use. Make sure to Install it indoors.
Do not use the device in locations where the oil seal lip is continuously exposed to oil, or where the device is exposed to large quantities of water, oil drops, or cutting fluid. The motor is designed to withstand only small amounts of moisture spray.

Ambient temperature: 0 to $40^{\circ} \mathrm{C}$
Storage temperature: -20 to $65^{\circ} \mathrm{C}$
Ambient humidity: 20 to 90%
Good ventilation, no corrosive or explosive gases present.
No dust or dirt accumulation in the environment. Easy access for inspection and cleaning.

- Mounting method

- Mounting in several orientations - horizontal, or with the shaft on top or bottom- is acceptable.
- If the output shaft is used in reduction devices that use grease, oil, or other lubricants, or in mechanisms exposed to liquids, the motor should be installed in a perfectly horizontal or downward position.
In some models, there is an oil-seal attached to the output shaft. If the shaft is facing upwards and the seal lip is continuously exposed to oil, oil can enter inside the motor and cause damage, as a result of wear and degradation of the oil seal. In such cases an oil-seal should be used on the load-side as well. Contact your distributor or sales office if the device is to be used in such conditions.
- The motor connector and cable outlet should be installed facing downwards, as nearly vertical as possible.
- In vertical installation, create a cable trap to prevent oily water from getting into the motor.

Waterproofing and dust proofing

- The protection inside the motor conforms to IEC standards (IEC34-5). However, such protection is suitable only for short-term use. For regular use, additional sealing measures are required.
Be sure to handle the connector carefully, as damage to the exterior of the connector (painted surface) can reduce its waterproofing capability.
- The motor waterproofing is of IPX 7 class level, but still requires careful handling. If the motor is continuously wet, due to the respiratory effect of the motor, liquid may penetrate inside the motor.
- Install a protective cover to prevent corrosion of the coating and the sealing material, which can be caused by certain types of coolants (especially water soluble types).

Q1- and Q2-series motors with the canon plugs are only IP67 rated if waterproof connectors and/or conduits are used on the matching canon connectors.

- Q1-series motors (with all flange sizes) and Q2-series motors (with the 42 mm flange size) not of the canon plug type are IP40 rated, but IP67 rated waterproofing is also available as an option. Q2-series motors with flange sizes of $54 \mathrm{~mm}, 76 \mathrm{~mm}$ and 86 mm have IP67 rated waterproofing.
R2-series motors have IP67 rated waterproofing, except for shaft passages and cable ends.

Protective cover installation

- Install a protective cover (as described below) for motors continuously subjected to liquids.
- Turn the connectors (lead outlets) downwards within the angle range shown in the picture below.
- Install the cover on the side where the water or oil would drip.
- Install the cover at an angle (for runoff), to prevent water or oil from collecting.
- Make sure that the cable does not get soaked in water or oil.
- Create a sag in the cable outside the cover, to make sure water or oil does not penetrate to the motor.
- If it is not possible to install the connectors (lead outlets) facing downwards, create a sag in the cable to prevent water or oil from entering the motor.

- Gear installation

- The oil level of the gear box should be below the oil seal lip, for a slight spraying effect on the lip.
- Create a hole to prevent pressure build-up inside the gear box, as pressure can cause water or oil to penetrate the oil seal and enter inside the motor.
- If the motor is used with the shaft facing upwards, an oil seal should be used on the opposite side of the mechanism as well. In addition, install a drain to expel the water or oil that may penetrate through this oil seal.

Integration with the target machinery

- Refer to the drawing below for correct centering of the motor shaft and the target machinery. Please note when using a rigid coupling that even a slight mistake in centering can damage the output shaft.

- Do not subject the motor shaft to shock, as the precision encoder is directly connected to it. If it is absolutely necessary to hit the motor for position adjustment or other reasons, use a rubber or plastic hammer and hit the front flange area.

- If mounting to a machine, create enough mounting holes for smooth coupling of the motorflange rabbet.
The mounting surface should be flat, otherwise damage to the shaft or the load may occur.
- Use the screw at the end of the shaft for installing parts such as the gear, pulley, or coupling, to avoid shock.

- Tapered motor shafts transmit the torque via the tapered surface. Make sure the key fits without rattling. The tapered surface contact should be no less than 70%.
- Use a special tool for removing the gear, pulley, etc.

Allowable bearing load

- The table below shows the allowable bearing load of the servo motors. Do not apply excessive thrust load or radial load. In case of belt driving, make sure that the shaft converted value of belt tension does not exceed the allowable values shown below. The thrust load and radial load tolerance values assume individual application to the shaft.

	Model	Assembly			Operation		
		Radial load（N）s	Thrust load（ N ）		Radial load（N）	Thrust load（N）	
		F_{R}	F direction	F1 direction	F_{R}	F direction	F1 direction
Q2	Q2AA22350	2300	1900	1900	1500	490	490
	Q2AA22450	2300	1900	1900	1500	490	490
	Q2AA22550	3900	2000	2000	1800	590	590
	Q2AA22700	3900	2000	2000	2500	1100	1100
	Q2AA2211K	3900	2000	2000	2700	1500	1500
	Q2AA2215K	3900	2000	2000	2300	1500	1500
R2	R2口A04003F	98	78	78	49	29	29
	R2口A04005F	150	98	98	98	29	29
	R2EA04008F	150	98	98	98	29	29
	R2AA04010F	150	98	98	98	29	29
	R2口A06010F	150	98	98	98	29	29
	R2口A06020F	390	200	200	200	68	68
	R2AA08020F	390	200	200	200	98	98
	R2AA06040F	390	200	200	250	68	68
	R2AA08040F	390	200	200	250	98	98
	R2AA08075F	590	390	390	340	200	200
	R2AAB8100F	590	590	780	290	340	200
	R2AA13050D	590	980	1400	1400	640	490
	R2AA13120D	590	1700	1900	1900	640	490
	R2AA13200D	590	1700	1900	1900	640	490
	R2AA22500L	590	2300	1900	1900	1500	490

Cable installation considerations

－Make sure that no stress is applied to the cable and that it is undamaged．
－If the servo motor is installed in a moving location，make sure that no excessive stress is applied to the cable，by allowing a large bending radius．
－Avoid pulling the cable over sharp objects such as cutting scrap that can damage its exterior． Make sure the cable is not touching any machinery，and that it is out of the path of people and machines．
－Prevent bending or additional weight stress on the cable connection by clamping the cable to the machinery．
In applications where the motor or the cable is moving using a cable bear，the bending radius should be based on the required cable－life and the type of cable used．
－Install the cables of moving parts in a manner that permits easy regular replacement．
Consult with your distributor or sales office for recommendations，if you use cables for moving parts．

[Wiring]

- Packaged Wiring Diagram 3-1
- High Voltage Circuit; Terminal Name and Function 3-5
- Wiring Example of High Voltage/Protective Circuit 3-7
- Low Voltage Circuit/Description of CN Terminal 3-9
- Low Voltage Circuit/CN1 Overall Wiring 3-11
- Low Voltage Circuit/Wiring Example of CN1 Input Circuit 3-12
Low Voltage circuit/CN2 Wiring • Wire-saving incremental encoder 3-14
Low Voltage circuitCN2 Wiring • Battery backup method absolute encoder and others 3-15
Low Voltage circuitCN2 Wiring • Absolute encoder with incremental output 3-16
- Low Voltage circuit/CN2 Wiring - Request method absolute encoder 3-17
- Power Supply • Peripherals 3-18
- Wire diameter 3-20
How to process CN1/CN2 shields 3-22
MODBUS Communication: Overview 3-23
- MODBUS Communication: Communication Procedure 3-29
- MODBUS Communication: Frame Composition 3-33
MODBUS Communication: Parameter 3-35
MODBUS Communication: Monitor Data 3-63
- MODBUS Communication: Point Data 3-69
- MODBUS Communication: Communication Example 3-73
- MODBUS Communication : Alarm Clear Procedure 3-79
MODBUS Communication : Encoder Clear Procedure 3-80
- Packaged wiring diagram AC200V-input type RS1 $\square 01 \mathrm{~A} / \mathrm{RS} 1 \square 03 \mathrm{~A} / \mathrm{RS} 1 \square 05 \mathrm{~A}$

- Packaged wiring diagram AC200V input type RS1口10A / RS1ロ15A

3．Wiring

High voltage circuit；terminal name and functions

Terminal name	Connector marking	Remarks	
	$\mathrm{R} \cdot \mathrm{T}$	Single phase AC100to115V $+10 \%,-15 \% ~ 50 / 60 \mathrm{~Hz} \pm 3 \%$	
Main power source	or	Single phase AC200to230V $+10 \%,-15 \% \quad 50 / 60 \mathrm{~Hz} \pm 3 \%$	
	$\mathrm{R} \cdot \mathrm{S} \cdot \mathrm{T}$	Three phase AC200to230V $+10 \%,-15 \% \quad 50 / 60 \mathrm{~Hz} \pm 3 \%$	
Control power source	$r \cdot t$	Single phase AC100to $115 \mathrm{~V}+10 \%,-15 \% ~ 50 / 60 \mathrm{~Hz} \pm 3 \%$	
		Single phase AC200to230V $+10 \%,-15 \% ~ 50 / 60 \mathrm{~Hz} \pm 3 \%$	
Servo motor connector	$\mathrm{U} \cdot \mathrm{V} \cdot \mathrm{W}$	Connected with servo motor	
Safeguard connector	\geqslant	Connected with grounding wire of power source and of servo motor．	
Regeneration resistance connector	$\begin{gathered} \mathrm{RB} 1 \cdot \mathrm{RB} 2 \\ \mathrm{RB} 4 \end{gathered}$	RS1ロ01AA RS1ロ03AA RS1ロ05AA RS1 $\square 30 A A$	Regeneration resistance will be connected to RB1－RB2．If it is built－in， regeneration resistance has been connected at the time of shipment．In case of short regeneration power，an external regeneration resistance is connected to RB1－RB2．There is no terminal RB4．
		RS1ロ10AA RS1ロ15AA	In case of a built－in regeneration resistance，RB1－RB4 are short circuited by a short bar at the time of shipment．If regeneration power is short，remove the short bar between RB1－RB4（open）and connect an external regeneration resistance at RB1－RB2．
DC reactor connector	DL1－DL2	Short circuited at the time of shipment．If high frequency waves need to be controlled， remove the short bar between DL1•DL2 and connect a DC reactor between DL1 • DL2．	
Maker maintenance	P．Θ	For maker maintenance．Do not connect anything．	

－How to insert high voltage circuit connector

－Insert the wire into ferrule，and use a special tool to crimp it in．
－Insert the ferrule deep into the connector，and tighten it with a special minus screw driver or something．
The recommended torque is 0.5 to $0.6 \mathrm{~N} \cdot \mathrm{~m}$ ．

3．Wiring

［High Voltage Circuit；Terminal Name and Function］
－Model number of recommended ferrules and crimping tools for various wire sizes （Manufactured by Phoenix Contact．）

mm^{2}	AWG	Model number		
		1Pcs／Pkt	1000Pcs／Pkt	Taped components
$0.75 \mathrm{~mm}^{2}$	18	Al0．75－8GY	Al0．75－8GY－1000	Al0．75－8GY－B （1000Pcs／Pkt）
$1.0 \mathrm{~mm}^{2}$	18	Al1－8RD	Al1－8RD－1000	Al1－8RD－B （1000Pcs／Pkt）
$1.5 \mathrm{~mm}^{2}$	16	Al1．5－8BK	Al1．5－8BK－1000	Al1．5－8BK－B $(1000 \mathrm{Pcs} / \mathrm{Pkt)}$
$2.5 \mathrm{~mm}^{2}$	14	Al2．5－8BU	Al2．5－8BU－1000	Al2．5－8BU－B $(500 P c s / P k t)$

Note）GY：Gray，RD：Red，BK：Black，BU：Blue
Crimping tool model number ： $0.25 \mathrm{~mm}^{2}$ to $6 \mathrm{~mm}^{2}$ ：CRIMPFOX UD $6-4,0.75 \mathrm{~mm}^{2}$ to $10 \mathrm{~mm}^{2}$ ：CRIMPFOX UD $10-4$
High voltage circuit terminal；tightening torque

	Terminal marking			
Amplifier type	CNA	CNB	CNC	\cdots
RS1口01	［ 0.5 to $0.6 \mathrm{~N} \cdot \mathrm{~m}$ ］			［1．18 N $\cdot \mathrm{m}$ ］ M4（screw size）
RS1口03				
RS1口05				

	Terminal marking															
Amplifier type	R	S	T	Θ	DL1	DL2	P	RB4	RB1	RB2	U	V	W	r	t	θ
RS1口10	［1．18 N $\cdot \mathrm{m}$ ］															
RS1口15	M4（screw size）															

	Terminal marking														
Amplifier type	R	S	T	Θ	DL1	DL2	P	U	V	W	\geqslant	RB1	RB2	r	t
RS1口30	$\begin{gathered} {[3.73 \mathrm{~N} \cdot \mathrm{~m}]} \\ \text { M6 (screw size) } \end{gathered}$											$\begin{gathered} {[1.18 \mathrm{~N} \cdot \mathrm{~m}]} \\ \text { M4 } \text { (screw size) } \end{gathered}$			

Wiring of the power line UVW

	Servo amplifier terminal number	Servo motor canon type terminal number
Q1AA10＊	U	A
Q1AA187＊	V	B
Q2AA185＊，Q2AA187＊	W	C
Q2AA22口ロK＊	E	D
Q1AA12＊	U	D
Q1AA13＊ Q1AA184＊	V	E
Q2AA13＊	W	F
Q2AA182＊to184＊ Q2AA22口ロ0＊	E	G，H

■ Three phase 200V RS1 $\square 01 \mathrm{~A} \cdot \mathrm{RS} 1 \square 03 \mathrm{~A} \cdot \mathrm{RS} 1 \square 05 \mathrm{~A} \cdot \mathrm{RS} 1 \square 30 \mathrm{~A}$

- Single phase 200V RS1 $\square 01 \mathrm{~A} \cdot \mathrm{RS} 1 \square 03 \mathrm{~A} \cdot \mathrm{RS} 1 \square 05 \mathrm{~A}$

*Make sure to install diode as a surge absorber when connecting induction load such as relay to output 8 on CN1.
Please carefully install diode so as not to connect polarity of diode. Failure to do this causes servo amplifier malfunction.

■ Three phase 200V RS1ロ10A • RS1口15A

Single phase 100V RS1 $\square 01 \mathrm{~A} \cdot \mathrm{RS} 1 \square 03 \mathrm{~A}$

[^1]Low voltage circuit; terminal name and functions

Terminal name	Terminal symbol	Description
Upper device input/output signal connector	CN1	Connects the input/output circuit between upper device (upper controller) and the Servo amplifier.
Encoder connector	CN2	Connects the encoder circuit of the servo motor.

Connector terminal number

- CN1 MUF-PK10K-K (Viewed from soldered side.)

- CN2 10120-3000PE (Soldered side)

3. Wiring

- CN1 connector terminal layout

1	3	5	7	9		
CONT-COM		CONT2	CONT4		OUT1	OUT-PWR
2	4	6	8	10		
	CONT1	CONT3	OUT-COM	OUT2	NC	

- CN1 terminal name

Terminal number	Signal code	Signal name	Standard setting brevity code of signal	Standard setting Standard nomenclature of signals
1	CONT-COM	Power supply for General input	-	-
2	CONT1	General input	SON	Servo-on
3	CONT2	General input	+OT	Forward over travel
4	CONT3	General input	-OT	Reverse over travel
5	CONT4	General input	EXT-E	External error
6	OUT-COM	Common for General output	-	Holding brake excitation timing output
7	OUT1	General output	HBON	Power-on permission
8	OUT2	General output	A-RDY	-
9	OUT-PWR	Power supply for general output	-	-
10	NC	-	-	

- CN1 Connector terminal layout

- Connection example with input circuit
- Composition of input circuit [Input circuit : Bi-directional photo coupler]

3. Wiring

- Connection example with general output circuit
- Composition of output circuit [output circuit : open collector]

3. Wiring

- CN2 terminal layout

10		8		6		4	

- Wiring for Wire-saving incremental encoder

Wire-saving incremental encoder				
Termina 1 No.	Signal name	Description	Servo motor lead type wire color	Servo motor canon type terminal number
1				
2	-		-	-
3	A0	A phase position signal	blue	A
4	$\overline{\mathrm{A}} \overline{0}$	output	brown	D
5	BO	B phase position signal	green	B
6	BO	output	purple	E
7	ZO	Z phase position signal	white	F
8	ZO	output	yellow	G
9	5 V	5 V power supply	(red)	(J)
10	SG	5 V power supply common	(black)	(N)
11	SG	5 V power supply common	(black)	(N)
12	5 V	5 V power supply	(red)	(J)
13				
14	-	-	-	-
15				
16	SG	5 V power supply common	(black)	(N)
17	5 V	5 V power supply	(red)	(J)
18	SG	5 V power source common	(black)	(N)
19	5 V	5 V power supply	red	J
20	SG	5 V power supply common	black	N
G Plate		Shield wire		H

- Refer to page 3-26 for how to process the shield wires.
- The number of power terminals for servo motor encoder connections varies depending on the encoder cable length. Refer to the following table.

	Power connection (CN2) terminal number for servo motor encoder			
Encoder cable length	5V power source terminal number			5V power source common terminal number
Less than 5 m	19	20		
Less than 10 m	19,17	20,18		
Less than 20 m	$19,17,12$	$20,18,11$		
Less than 30 m	$19,17,12,9$	$20,18,11,16,10$		

- Use twisted pair and outer insulated shield cables.
- CN2 plug: 10120-3000PE
- CN2 shell: 10320-52AO-008
- Servo motor encoder: canon plug
- JL04V-6A20-29S-J1(A72)
- JL04V-8A20-29S-J1-EB
- JL04V-6A20-29S-J1-EB
- MS3108B20-29S
-MS3106B20-29S

3. Wiring [Low Voltage circuit/CN2 Wiring - Battery backup method absolute encoder and others]

CN2 terminal layout

- Wiring for Battery backup method absolute encoder/Absolute encoder without battery/Absolute encoder for incremental system

Battery backup method absolute encoder/Absolute encoder without battery/Absolute encoder for incremental system					No battery wiring necessary for Absolute encoder without battery/Absolute encoder for incremental system
Terminal No.	Signal code	Description	Servo motor lead type wire color	Servo motor canon type terminal number	
1	BAT+	Battery	pink	T	
2	BAT-		purple	S	
3	-	-	-	-	
4					
5					
6					
7					
8					
9	5 V	5 V power supply	(red)	(H)	
10	SG	5 V power supply common	(black)	(G)	
11	SG	5 V power supply common	(black)	(G)	
12	5 V	5 V power supply	(red)	(H)	
13	ES	Position data output	brown	E	
14	ES		blue	F	
15	-	-			
16	SG	5 V power supply common	(black)	(G)	
17	5 V	5 V supply source	(red)	(H)	
18	SG	5 V power supply common	(black)	(G)	
19	5 V	5 V power supply	red	H	
20	SG	5 V power supply common	black	G	
G Plate		Shield wire		J	

- Refer to page 3-26 for how to process the shield wires.
- The number of power terminals for servo motor encoder connections varies depending on the encoder cable length. Refer to the following table.

	Power connection (CN2) terminal number for servo motor encoder	
Encoder cable length	5V power supply terminal number	5 V power supply common terminal number
Less than 10 m	19	20
Less than 25 m	19,17	20,18
Less than 40 m	$19,17,12$	$20,18,11$

Use twisted pair and outer insulated shield cables.

- CN 2 plug: 10120-3000PE
- CN 2 shell: 10320-52A0-008
- Servo motor encoder: canon plug
- JL04V-6A20-29S-J1(A72)
- JL04V-8A20-29S-J1-EB
- JL04V-6A20-29S-J1-EB
- MS3108B20-29S
- MS3106B20-29S

3. Wiring

CN2 terminal layout

10		8		6		4		2		
2	9	7	5	3	1					
20	18	16		14	12					
20	19	17	15	13	11					

- Absolute encoder with incremental output

Absolute encoder with incremental output				
Terminal No.	Signal Cord	Description	Servo motor lead type wire color	Servo motor canon type terminal number
1	BAT+	Battery	light orange or clear	T
2	BAT-		brown	S
3	A0	A phase position signal output	pink	A
4	$\overline{\mathrm{A}}$ O		red	B
5	BO	B phase position signal output	blue	C
6	BO		green	D
7	ZO	Z phase position signal output	yellow	K
8	ZO		Orange	L
9	5 V	5 V power supply	(white)	(H)
10	SG	5 V power supply common	(black)	(G)
11	SG	5 V power supply common	(black)	(G)
12	5 V	5 V power supply	(white)	(H)
13	PS	Position data output	Pale blue	E
14	PS		purple	F
15	ECLR	Clear signal	Dark green or light green	R
16	SG	5 V power supply common	(black)	(G)
17	5 V	5 V power supply	(white)	(H)
18	SG	5 V power supply common	(black)	(G)
19	5 V	5 V power supply	white	H
20	SG	5 V power supply common	black	G
G Plate	Shield wire			J

- Refer to page 3-26 for how to process the shield wires.
- The number of power terminals for servo motor encoder connections varies depending on the encoder cable length. Refer to the following table.

	Power connection (CN2) terminal number for servo motor encoder	
Encoder cable length	5 V power supply terminal number	
5 V power supply common terminal number		
Less than 5 m	19	20,16
Less than 10 m	19,17	$20,16,18$
Less than 20 m	$19,17,12$	$20,16,18,11$
Less than 30 m	$19,17,12,9$	$20,16,18,11,10$

- Use twisted pair and outer insulation shield cables.
- CN2 plug: 10120-3000PE
- CN2 shell: 10320-52AO-008
- Servo motor encoder: canon plug
- JL04V-6A20-29S-J1(A72)
- JL04V-8A20-29S-J1-EB
- JL04V-6A20-29S-J1-EB
- MS3108B20-29S
- MS3106B20-29S

3. Wiring_[Low Voltage circuit/CN2 Wiring - Request method absolute encoder]

- CN2 terminal layout

10	8		6		4		2		
	9		7		5		3		1
20	18		16		14		12		
	19		17		15		13		11

Request method absolute encoder

Request method absolute encoder				
Terminal No.	Signal code	Description	Servo motor lead type wire color	Servo motor canon type terminal number
1	-	-	-	-
2	-	-	-	-
3	REQ+	Requested Signal	purple or orange	N
4	REQ-		green	P
5	-	-	-	-
6	-	-	-	-
7	-	-	-	-
8	-	-	-	-
9	5V	5V power supply	(red)	(H)
10	SG	5 V power supply common	(black)	(G)
11	SG	5 V power supply common	(black)	(G)
12	5V	5V power supply	(red)	(H)
13	PS	Position data output	brown	E
14	PS		blue	F
15	ECLR	Clear signal	white	R
16	SG	5 V power supply common	yellow	(G)
17	5V	5V power supply	(red)	(H)
18	SG	5 V power supply common	(black)	(G)
19	5V	5 V power supply	red	H
20	SG	5 V power supply common	black	G
G Plate	Shield wire			J

- Refer to page 3-26 for how to process the shield wires.
- The number of power terminals for servo motor encoder connections varies depending on the encoder cable length. Refer to the following table.

	$\begin{array}{r}\text { Power connection (CN2) terminal number for } \\ \text { servo motor encoder }\end{array}$	
Encoder cable length	$\begin{array}{c}\text { 5V power supply } \\ \text { terminal number }\end{array}$	
Less power supply common		
terminal number		

- Use twisted pair and outer insulated shield cables.
- CN 2 plug: 10120-3000PE
- CN 2 shell: 10320-52A0-008
- Servo motor encoder: canon plug
- JL04V-6A20-29S-J1(A72)
- JL04V-8A20-29S-J1-EB
- JL04V-6A20-29S-J1-EB
- MS3108B20-29S
- MS3106B20-29S
[Power Supply • Peripherals]
Power Capacity • Peripherals Examples

Input Voltage	Servo amplifier capacity RS1 * 믈	Servo motor model number	Rated Output(W)	Rated main power supply (KVA)	Power supply control (VA)	Circuit breaker	Noise filter (EMC corresponding time)	Electro magnetic contactor
$\begin{gathered} \text { AC } \\ 100 \mathrm{~V} \end{gathered}$	01	Q1EA04003D	30	0.2	40	NF30 shape 10A Manufactured by Mitsubishi Ltd.	RF1010-DLC Manufactured by RASMI	S-N10 Manufactured by Mitsubishi
		Q1EA04005D	50	0.3				
		Q1EA04010D	100	0.5				
		Q2EA04006D	60	0.3				
		Q2EA04010D	100	0.5				
		Q2EA05005D	50	0.3				
		Q2EA05010D	100	0.5				
		R2EA04003F	30	0.2				
		R2EA04005F	50	0.2				
		R2EA04008F	80	0.4				
		R2EA06010F	100	0.5				
	03	Q1EA06020D	200	0.5				
		Q2EA05020D	200	0.5				
		Q2EA07020D	200	0.5				
		R2EA06020F	200	0.8				

- Recommended surge protector : R•A•V-781BXZ-2A Manufactured by Okaya Electric Industries Co.,Ltd.
－Recommended Wire Diameter Examples

Input Voltage	Servo motor model	Motor power wire diameter $(U \cdot V \cdot W \cdot \theta)$		servo amplifier combination	Main power supply wire diameter （R．S．T．θ ）		Control power wire diameter	Regeneration resistance wire diameter	$\mathrm{CN} 1 \cdot \mathrm{CN} 2$ Signal wire diameter
		mm^{2}	AWG No		mm^{2}	AWG No	－	－	－
AC200V	Q1AA04003D	0.5	\＃20	RS1■01	1.25	\＃16	AWG 16 $1.25 \mathrm{~mm}^{2}$		
	Q1AA04005D								
	Q1AA04010D								
	Q1AA06020D	0.75	\＃18						
	Q1AA06040D	0.75	\＃18	RS1■03	2.0	\＃14		AWG 14	
	Q1AA07075D							2.0 mm ${ }^{2}$	
	Q1AA10100D	3.5	\＃12	RS1■05	3.5	\＃12		AWG 12	
	Q1AA10150D							$3.5 \mathrm{~mm}^{2}$	
	Q1AA10200D	3.5	\＃12	RS1ロ10	5.5	\＃10		AWG 10	
	Q1AA10250D							$5.5 \mathrm{~mm}^{2}$	
	Q1AA12200D	5.5	\＃10	RS1ロ10	5.5	\＃10			
	Q1AA12300D							$5.5 \mathrm{~mm}^{2}$	
	Q1AA13300D								
	Q1AA13400D	5.5	\＃10	RS1口15	8.0	\＃8			
	Q1AA13500D							AWG 8 $8.0 \mathrm{~mm}^{2}$	
	Q1AA18450M								
	Q1AA18750H	14.0	\＃6	RS1口30	14.0	\＃6		AWG 6 $14.0 \mathrm{~mm}^{2}$	
	Q2AA04006D	0.5	\＃20	RS1■01	1.25	\＃16			
	Q2AA04010D								
	Q2AA05005D	0.75	\＃18						
	Q2AA05010D							AWG 16	
	Q2AA05020D								
	Q2AA07020D								
	Q2AA07030D								
	Q2AA07040D	0.75	\＃18	RS1■03	2.0	\＃14		AWG 14 $2.0 \mathrm{~mm}^{2}$	
	Q2AA07050D								
	Q2AA08050D								
	Q2AA13050H	2.0	\＃14						
	Q2AA08075D	0.75	\＃18	RS1■05	3.5		AWG 16		
	Q2AA08100D								
	Q2AA10100H	3.5	\＃12					AWG 12	
	Q2AA10150H								AWG 24
	Q2AA13100H	3.5	\＃12						$0.2 \mathrm{~mm}^{2}$
	Q2AA13150H	5.5	\＃10	RS1ロ10	5.5	\＃10			
	Q2AA18200H							AWG 10	
	Q2AA22250H								
	Q2AA18350H	5.5	\＃10	RS1口15	8.0	\＃8		AWG 8 $8.0 \mathrm{~mm}^{2}$	
	Q2AA18450H								
	Q2AA18550R	8.0	\＃8	RS1ロ15					
	Q2AA22350H	5.5	\＃10						
	Q2AA22450R	5.5	\＃10						
	Q2AA22550B	5.5	\＃10						
	Q2AA22700S								
	Q2AA18550H	14.0	\＃6	RS1■30	14.0	\＃6		AWG 6 $14.0 \mathrm{~mm}^{2}$	
	Q2AA18750L								
	Q2AA2211KV								
	Q2AA2215KV								
	Q4AA1811KB								
	Q4AA1815KB								
	R2AA04003F	0.5	\＃20	RS1■01	1.25	\＃16		AWG 16 $1.25 \mathrm{~mm}^{2}$	
	R2AA04005F								
	R2AA04010F								
	R2AA06010F								
	R2AA06020F	0.75	\＃18						
	R2AA08020F								
	R2AA06040F	0.75	\＃18	RS1■03	2.0	\＃14			
	R2AA08040F							AWG 14	
	R2AA08075F							2.0 mm ${ }^{2}$	
	R2AA13050D								
	R2AAB8100F	3.5	\＃12	RS1口05	3.5	\＃12		AWG 12	
	R2AA13120D							$3.5 \mathrm{~mm}^{2}$	
	R2AA13200D	5.5	\＃10	RS1口10	5.5	\＃10		AWG 10 $5.5 \mathrm{~mm}^{2}$	
	R2AA22500L	5.5	\＃10	RS1口15	8.0	\＃8		AWG 8 $8.0 \mathrm{~mm}^{2}$	

Input Voltage	Servo motor model number	$\begin{gathered} \hline \text { Motor power wire } \\ \text { diameter } \\ (\mathrm{U} \cdot \mathrm{~V} \cdot \mathrm{~W} \cdot \theta) \\ \hline \end{gathered}$		servo amplifier combination	Main power supply wire diameter （R．S．T．θ_{-}）		Control power wire diameter	Regeneration resistance wire diameter	CN1•CN2 Signal wire diameter
		mm^{2}	AWG No		mm^{2}	AWG No	－	－	－
AC100V	Q1EA04003D	0.5	\＃20	RS1口01	1.25	\＃16	AWG 16	AWG 16 $1.25 \mathrm{~mm}^{2}$	AWG 24 $0.2 \mathrm{~mm}^{2}$
	Q1EA04005D								
	Q1EA04010D								
	Q2EA04006D								
	Q2EA04010D								
	Q2EA05005D	0.75	\＃18						
	Q2EA05010D	0.75	\＃18						
	Q1EA06020D								
	Q2EA05020D	0.75	\＃18	RS1■03	2.0	\＃14		$\begin{aligned} & \text { AWG } 14 \\ & 2.0 \mathrm{~mm}^{2} \end{aligned}$	
	Q2EA07020D								
	R2EA04003F								
	R2EA04005F	0.5	\＃20	RS1口01	1.25	\＃16		AWG 16	
	R2EA04008F	0.5	\＃20	RS1－01				$1.25 \mathrm{~mm}^{2}$	
	R2EA06010F								
	R2EA06020F	0.75	\＃18	RS1口03	2.0	\＃14		AWG 14 $2.0 \mathrm{~mm}^{2}$	

－The information in this table is based on rated current flowing through three bundled lead wires in ambient temperature of $40^{\circ} \mathrm{C}$ ．
－When wires are bundled or put into a wire－duct，take the allowable current reduction ratio into account．
－If ambient temperature is high，service life of the wires becomes shorter due to heat－related deterioration．In this case，use heat－resistant vinyl wires．
－The use of heat－resistant vinyl wires（HIV）is recommended．
－Depending on the servo motor capacity，thinner electric wires than indicated in the above table can be used for the main circuit power input terminal．
－Connector for Servo Amplifier
\(\left.$$
\begin{array}{|l|l|l|l|l|l|l|l|}\hline & \text { Name } & \begin{array}{l}\text { Sanyo Denki } \\
\text { Model No．}\end{array} & \begin{array}{l}\text { Model No．of } \\
\text { applicable amplifier }\end{array} & \text { Name } & \begin{array}{l}\text { Manufacturer＇s } \\
\text { model No．}\end{array} & \text { Manufacturer }\end{array}
$$ \begin{array}{l}Recommended

tightening torque\end{array}\right]\)| | | | |
| :--- | :--- | :--- | :--- |
| （1） | CN1 | AL－00385594 | All |

Combination	Sanyo Denki Model No．	Model No．of applicable amplifier
Set of（1）＋（2）	AL－00292309	All
Set of（3）＋（6）	AL－00416792	RS1■01toRS1■05（200V input only）
Set of（1）＋（2）＋（3）＋（6）	AL－00393603	RS1口01toRS1口05（200V input only）
Set of（1）＋（2）＋（4）＋（6）	AL－00492384	RS1■01toRS1口03（100V input only）

－To have an insulation distance between the main circuit wires and between the main circuit and the signal circuit wires，the use of pole terminals with insulation sleeves is recommended．（If the wire in use is thicker than AWG12，these cannot be used．）

How to process CN2 shields.

The drawings below show how to process shields for CN1/CN2 connectors.
There are two ways to process shields; clamping and soldering.

* Compression insert should only be attached before soldering the cable to the connector.

- Applicable ϕ A measurements for CN2.

Applicable $\phi \mathrm{A}$ measurements are shown below. Compression insert is not required if the $\phi \mathrm{A}$ measurements are within these.

Connector NO.	Applicable Φ A measurement	Connector model number	Manufacturer
CN2	10.5 to 12.0 mm	$10120-3000 \mathrm{PE}$	3 M Japan Limited

3. Wiring
 [MODBUS Communication: Overview] [Description of CN3 • 4 Serial Interface (MODBUS communication)]

- Basic Specifications

Item	Content	Default value	Remark
Protocol	Modbus-RTU	-	Binary mode fixed (No compliant with ASCII mode)
Interface	RS-485(1:N)	-	$\mathrm{N}=8$ (Note 1)
Baud Rate (bps)	$4800,9600,19200$, $38400,5600,115200$	115200	(Note 2)
Start bit	1	1	Fixed
Data length (bit)	8	8	Fixed
Parity	None, even/odd number	even	(Note 3)
Stop bit	1,2	1	(Note 3)
Electric specification	Based on RS-485 (half fuplex communication)	RS-485-compliant (half-duplex communication)	Fixed
Connector	RJ-45	-	

Note 1) From the limitation of general RS-485 physical layer (distance, terminator) specification, connectable amplifier (or other slave units) number is up to 31 per one segment. (Maximum number of devices without repeater.) Set up a node address with the rotary switch front of amplifier or in the R-Setup (personal computer interface) soft ware.
Note 2) Set up a communication setup (access speed) with the rotary switch on the front surface of amplifier or in R-Setup (personal computer interface).
Note 3) Communication setup (transfer speed, parity, stop bit) is set up by the R-Setup software (interface with PC).

- Communication Setup of Servo Amplifier

- Servo amplifier communication setting can be changed by rotary switches on the front surface of amplifier and R-setup (interface with PC) software (general parameter Group D).

Page	Name	Standard set value	Unit	Setting range
50	Host communication baud rare	$05: _115200 \mathrm{bps}$	-	$00-06$
51	Host communication format	$00: _$Even_1Stop	-	$00-02$
52	Host communication slave address offset	$00: _+0$	-	$00-\mathrm{F0}$
53	Host communication rotary switch 1 mode	$00: _$Baudrate	-	$00-01$
54	Host communication wait time	0	$\mathrm{~N}^{\star} 125 \mu \mathrm{~S}$	$0-8000$
55	Host communication time out	0	mS	$0-10000$
56	Host communication specification	$00: _$MODBUS	-	$00-01$
57	Host communication function	$00: _$Standard	-	00

- The function of the rotary switch 1 is set up.

When baud rate is chosen, set up slave address offset on the page 52 of Group D.
When slave address offset is chosen, set up baud rate on the page 50 of Group D.

Page	Content		
53	MODBUS Rotary switch 1 mode [MODRSWMODE]		
	$\begin{gathered} \hline \text { Set range } \\ \hline 00,01 \\ \hline \end{gathered}$	Standard set value	The function of the rotary switch 1 (RSW1) is set up. ψ_{Δ} Setting becomes effective after control power supply re-input.
	Selective value Communication baud rate is set up with the rotary switch 1. 00: Baudrate Comer 01 Adreser		

- The host of a slave address is set up.

Page	Content		
52	MODBUS Slave address offset [MODADDROFS]		
	Set range	Standard set value $00:+0$	The offset value of the amplifier that does MO up. Setting becomes effec mode is a setup of 00: Setting becomes eff supply re-input.
	Selective value		
	00:_+0	0 is added to the	ch 2 as an offset value.
	10:+16	16 is added to the	itch 2 as an offset value.
	20: + +32	32 is added to the	itch 2 as an offset value.
	30: + +48	48 is added to the	itch 2 as an offset value.
	40: + +64	64 is added to the	itch 2 as an offset value.
	50: + +80	80 is added to the	itch 2 as an offset value.
	60:_+96	96 is added to the	itch 2 as an offset value.
	70: + +112	112is added to th	witch 2 as an offset value.
	80:+128	128 is added to th	witch 2 as an offset value.
	90:+144	144 is added to th	witch 2 as an offset value.
	A0:+160	160 is added to th	witch 2 as an offset value.
	B0:+176	176 is added to th	witch 2 as an offset value.
	C0:+192	192 is added to th	witch 2 as an offset value.
	D0:+208	208 is added to th	witch 2 as an offset value.
	E0:+224	224 is added to th	witch 2 as an offset value.
	F0:+240	240 is added to th	witch 2 as an offset value.

Baud rate is set up.

Page	Content		
50	MODBUS Communication baud rate [MODBAUD]		
	Set range 00 to 05	Standard set value	The baud rate that does MODBUS communication with servo amplifier is set up. Setting becomes effective when the rotary switch 1 mode is a setup of 01: Address. \star_{0} Setting becomes effective after control power supply re-input.
	Selective value 00:_4800bps $01: _9600 \mathrm{bps}$ 02:_19200bps	Selective value 03:_38400bps $04: _57600 \mathrm{bps}$ $05: _115200 \mathrm{bps}$	

- Set latency time to communicate.

| Page | Content | |
| :---: | :---: | :---: | :---: |
| 51 | MODBUS Communication format [MODCOMMFMT] | |

- Communication waiting time is set up.

- Communication timeout is set up.

Page	Content			
55	MODBUS Communication timeout [MODTIMEOUT]			
	$\begin{aligned} & \text { Set range } \\ & \hline \text { Oto10000 } \end{aligned}$	Unit	Standard set value 0	The communication timeout time of servo amplifier is set up. Communication timeout is not detected when setting is 0 . When communication timeout time is set up, publish a communication message periodically so that communication timeout is not detected with servo amplifier. 6 Setting becomes effective after control power supply re-input.

- Set communication specification.

56	Specifications for communication with host controller [HCOMSPEC]		
	Setting range 00,01	Standard set value 00:_MODBUS	Set specifications for controller. Set value become control power supply
	Value to be selected Contents $00: _$MODBUS Set specifications for MODBUS-communication.		

- Set communication specification.

57	Specifications for communication with host controller [HCOMFUNC]		
	$\begin{array}{c\|} \hline \text { Setting range } \\ \hline 00 \end{array}$	dard set value	Set specifications for communication with host controller. Set value becomes effective after returning on control power supply.
	Value to be selected Contents $00:$ Standard Set standard function.		

Setup of Slave Address and Communication Baud Rate

- Terminating resistance

Set up the terminating resistance if needed with the switch in front of amplifier.
(The factory default setting is "with termination resistor, set to ON.")

- Setup of the rotary switches 1 and 2

By mode select, the rotary switch 1 can change whether the high-order byte of a slave address is set up, or baud rate is set up. (The default at the time of factory shipments is baud rate.)
Setup of the parameter which was not chosen with the rotary switch 1 can be set up by GroupD, General parameter setup of R-Setup. The rotary switch 2 should set up the low-order byte of a slave address. (The default at the time of factory shipments is 1.)

Applicable Cables

- RJ-45 Connector

To secure the reliability in connection, specifications of applicable cables are specified as below.

	Specifications
Common	UL Electrically Verified to ANSI/TIA/EIA 568A Category 5,
Specification	Straight-through cable for 10BASE-T/100BASE-TX (Commercially available LAN cable)

Recommended LAN Cables
Manufacturer: SANWA SUPPLY INC
Model Number: KB-10T5-01K (1m)
KB-STP-01K (1m shielded cable: Compliant with EMC directives)

- Specification of connection cable for a host device

To secure the reliability in connection, use the twisted pair shielded cable for long-distance transmission.

- Caution for RJ-45 modular connector selection
- For the modular connector selection and modification, please confirm the standards dimension below (Standards: TIA-968-A).
- Especially, when the connector (ready-made/ modified product) which has out-of-range dimension at C (from top end of connector housing to lower side of terminal) is used, it gives excessive stress to mating connector and may cause a damage of terminal or connector, and a communication error by contact failure.

Standards dimension:
A: 11.58 to 11.78 mm
B: 6.49 to 6.70 mm
C: 5.89 to 6.15 mm

MODBUS Communication Wiring

- Pin disposition of CN3 and CN4

Pin on RJ45	EIA/TIA- 485 name	Description
1		
2		
3	B/B'	Transmit/Receive +
4	A/A'	Transmit/Receive -
5		
6	C/C'	
7		Signal Ground (GND)
8		

- Example with pin disposition of CN 3 and CN 4

3. Wiring
 Master / Slave Communication Time Diagram

- Normal message

In the communication mode of MODBUS-RTU, the message frame judges the beginning of a message and the last by detection of the silence interval time of 3.5 or more characters.
Communication is started by the request from the master.
Communication is not started from the slave. Moreover, there is also no communication between slaves.
(1)Message is sent to the slave (servo amplifier) from the master. (Request)
(2)Message is returned to the master from the slave (servo amplifier). (Response)

TO • . • Indicates silence interval time (for about 3.5 characters)
Calculate silence interval time for every communication baud rate.
e.g.) In the case of 115200 bps communication baud rate [$1 / 115200 \times 3.5 \times 11$ (bit) $=$ about 334 ($\mu \mathrm{S}$)]

T1 • • • Indicates servo amplifier incoming message processing time (about $500 \mu \mathrm{~S}$)
T2 • • • Indicates communication waiting time (from 0 mS to 1000 mS)
Setup of the communication waiting time at the time of factory shipments serves as 0 mS .
In the system for which reception is not enough with a master with the response time (T0+T1) of amplifier, the response from amplifier is delay able per 1 mS setting up this value.
T3 • . - Indicates time after servo amplifier sends a response massage until it gives the next request to replying permission
Changes with request messages from the master.
When the write-in request to a register is received, the preservation process to nonvolatile memory (EEPROM) is implemented. Therefore, in sending a write-in request, after T 3 hours or more pass, send the next request.

3. Wiring

- Time after Servo Amplifier Receives a Request Message until it Sends to Start of the Response Massage (Response time)

Response time is the sum total time of $\mathrm{T} 0, \mathrm{~T} 1$, and T 2 .

Communication baud rate (bps)	T0 (mS)	T1 (mS)	T2 (mS)	Response time (mS) [When T2=0]
115200	0.334	0.5	Oto1000	about 0.834
57600	0.668			about 1.168
38400	1			about 1.5
19200	2			about 2.5
9600	4			about 4.5
4800	8			about 8.5

- Time after Servo Amplifier Sends a Response Massage until it Gives the Next Request to Replying Permission

Function code	Function Name	EEPROM save	T3 (mS)
0×01	Read Coils	None	More than T0
0×03	Read Holding Registers		
0×05	Write Single Coil		
0×06	Write Single Register (Coil Input)		
0x08	Diagnostic		
0x10	Write Multiple Registers (Coil Input)		
	Write Multiple Registers (Point Data) [When from the block 0 to the block 9]		
0×06	Write Single Register (Servo Gain)	Exists	More than 22mS
0×10	Write Multiple Registers (Servo Gain)		More than $22 \mathrm{mS} \times$
	Write Multiple Registers (Point Data) [When from the block 10 to the block 253]		n-word

(a) In the write-in process to a coil input, the preservation process to nonvolatile memory (EEPROM) is not implemented.
As for the data of blocks 0 to 9 , in point data, the preservation process to nonvolatile memory (EEPROM) is not implemented.
In a write-in process of other servo gains, point data, etc., the preservation process to nonvolatile memory (EEPROM) is implemented.
2-word data is contained in point data.
In writing in two or more word data (n-word), please take into consideration the T 3 hours.

3. Wiring

- Broadcast message

Message can be simultaneously sent to two or more slaves.
There is no response from the slave to the broadcast message.

Time

T4 • • • Indicates broadcast message response delay waiting time
The processing time inside communication baud rate, the message which sends, and amplifier etc. is included.
After this time progress, the master can send the following message.

- Description of broadcast message response delay waiting time

Response delay waiting time changes with communication baud rate and outgoing messages.
Design the following table to reference with the number of words (n) saved at EEPROM.
In the case of the outgoing message which is not saved at EEPROM, calculate by $\mathrm{n}=0$.

Communication baud rate (bps)	$\mathrm{TO}(\mathrm{mS})$	$\mathrm{T} 1(\mathrm{mS})$	EEPROM save (mS)	
115200	0.334			$\mathrm{~T} 4(\mathrm{mS})$

3. Wiring

- Error detection message

The driver (slave) will ignore a request and will not return a response under the following conditions:
(1) When the driver detects a communication error during the request receiving process.
(2) When the slave address of a request and the slave address configured for the driver do not match.
(3) When the portion of the data comprising the message and time interval is less than or equal to 3.5 characters.
(4) When the data length of a request is invalid.

4] When you prepare the timer which supervises a response by a master and the response does not come to within a time on the contrary, send the same request message again. (Resending process)

T5 • • Indicates response timeout time Set up time to supervise timeout of the response from a slave by a master.

3.Wiring

Modbus Frame composition

The Modbus application protocol defines a simple Protocol Data Unit (PDU) independent of the underlying communication layers.

- Slave address

Slave Address (1 byte)	
0×00	Broadcast address
0×01 to 0xF7	Slave individual address
$0 \times F 8$ to 0xFF	Reserved

- Function code

Use Modbus-RTU communication and specify the function implemented in servo amplifier.
The function code which corresponds with servo amplifier is shown below.

Function code (Hex)	Function Name	Content
0×01	Read Coils	The state of I/O coil is referred to.
0×03	Read Holding Registers	Holding registers, such as parameter, monitor, and point data are referred to.
0×05	Write Single Coil	Writes in output coil.
0×06	Write Single Register	Parameter etc. is written in holding register.
0×08	Diagnostic (Serial Line only)	Communication diagnosis (Loopback test).
0×10	Write Multiple Registers	Parameter, point data, etc. are written in two or more holding register.

Note : Do not use function codes (FC) other than the above.
In writing to two or more coils, please set by using the function of plural register writing or register writing to the register address allocating coils.

- Data

As for the data area, the allocation is different accodeing to the function code.
For details, refer to explanation of each function code.

- CRC

CRC (Cyclic Redundancy Check) is used for error checking of Modbus-RTU.
The generation polynomial of CRC1-16 (X16+X15+X2+1) is used for generation of the CRC code.

1. A procedure for generating a $C R C$ is:
(1) Load 0xFFFF to CRC16 (register).
(2) Calculate the byte of the beginning of a message, and Exclusive OR of CRC16 (register), and substitute the result for CRC16 (register).
(3) Shift the CRC register one bit to the right, zero-filling the MSB.

Extract and examine the LSB.
(4) (If the LSB was 0):

Returns to Step (3) without doing anything.
(If the LSB was 1):
Calculate Exclusive OR of fixed value (0xA001) and CRC16 (register), and substitute a result for CRC16 (register).
Return to Step (3) and check the next bit.
(5) Repeat Steps (3) and (4) until 8 shifts have been performed.

When this is done, a complete 8-bit byte will have been processed.
(6) Repeat Steps (2) through (5) for the next 8-bit byte of the message.

Continue doing this until all bytes have been processed.
(7) The final content of the CRC register is the CRC value.
(8) When the CRC is placed into the message, its higher and lower bytes must be swapped as described below.

2. Placing the CRC into the Message When the 16-bit CRC (two 8-bit bytes) is sent in the message, the low-order byte will be sent first, followed by the high-order byte.

XOR --- exclusive OR
N --- number of information bits POLY --- 1010000000000001 BYTE --- Data (1byte) For example, if the CRC value is 1241 hex (0001 001001000001).

Slave Address (1 byte)	Function code (1byte)	Data (0 up to 252 bytes)	CRC (2bytes)					
							CRC Lo	CRC Hi
	0×41	0×12						

3. CRC error judgment

The sending side which adds CRC to a message calculates the value of CRC.
The reception side compares the result of having re-calculated and calculated CRC with the value received as CRC during reception of a message.
As for servo amplifier, if these two values are not in agreement, an incoming message is canceled as a CRC error.
Then waits for a message in preparation for the next reception. (Will not be in an alarm condition.)

Function codes descriptions

- 01 (0×01) Read Coils

Reads the coil status. ($1=\mathrm{ON}, 0=\mathrm{OFF}$)
Request

Slave Address	1byte	0×01 to 0xF7 (Note1)
Function code	1byte	0×01
Coil Starting Address Hi	2 byte	0×0000 to 0x003F (Note2)
Coil Starting Address Lo		
Quantity of Outputs Hi (Note3)	2byte	0×0001 to 0x0040
Quantity of Outputs Lo (Note3)		2 byte
CRC-16 Lo		
CRC-16 Hi		

Note1: Broadcasting cannot be performed.
Note2: Coil Starting Address $=$ Coil Number -1
Coil Number $=1$ to 64
Note3: The value exceeding 0 or 64 cannot be set as the number of read-out coils.
When it is set up, an exception code (0×02) is sent back as an error response.
Normal Response

Slave Address	1byte	0×01 to 0xF7
Function code	1 byte	0×01
Byte Count	1 byte	N (Note4)
Coil Status	nbyte	$\mathrm{n}=\mathrm{N}$ or N+1
CRC-16 Lo	2 byte	
CRC-16 Hi		

Note4: The quotient which divided the number of coils by 8 is a number of bytes (N).
When there is remainder, add 1 to a quotient and consider it as a number of bytes.
When there are the remaining bits in the state of a coil, the remaining bits perform zero padding.
Error Response

Slave Address	1 byte	0×01 to 0xF7
Function code	1 byte	0×81
Exception code	1 byte	0×01 (IIIegal Function) 0×02 (IIIgal Data Address) 0×03 (Illgal Data Value) 0×04 (Slave Device Failure)
CRC-16 Lo	2byte	
CRC-16 Hi		

- Coil Number Bit Data - Input allotment1

Refer to the coil input specification for explanation of each bit.

Coil Number (Hex)	Bit Data								Remarks
	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
0x0001	CACL	ARST	RAP	-JOG	+JOG	ZRT	RUN	S-ON	
0x0009	M_FIN	IRUN	-1step	+1step	$\begin{gathered} \mathrm{OVRD}_{1} \\ 3 \end{gathered}$	$\begin{gathered} \hline \text { OVRD_ }_{2} \end{gathered}$	$\begin{gathered} \text { OVRD_ }_{1} \end{gathered}$	$\begin{gathered} \mathrm{OVRD}_{1} \\ 0 \end{gathered}$	
0x0011	E_STR	-OT	+OT	SDN	HOME	BRK FREE	EXT_E	$\begin{aligned} & \hline \text { BAT } \\ & \text { CLR } \end{aligned}$	
0x0019	IN(128)	$\mathrm{IN}(64)$	$\mathrm{IN}(32)$	$\mathrm{IN}(16)$	$\mathrm{IN}(8)$	$\mathrm{IN}(4)$	$\mathrm{IN}(2)$	$\mathrm{IN}(1)$	

Note : Coil Starting Address = Coil Number - 1
Coil Number $=1$ to 32
"-"means reservation. Always set up 0.

- Coil Number Bit Data - Output allotment1

Coil Number (Hex)	Bit Data								Remarks
	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
0x0021	$\begin{aligned} & \text { WAR } \\ & \text { (ZFIN) } \end{aligned}$	INPS	PFIN	MOVE	EXT	ERR	HBON	NCRDY	
0x0029	C_RDY	$\begin{gathered} \text { T_LIM } \\ \hline \text { _FLG } \end{gathered}$	$\begin{aligned} & \mathrm{IN} \\ & \mathrm{FEED} \end{aligned}$	$\begin{aligned} & \mathrm{IN} \\ & \mathrm{STOP} \end{aligned}$	SVACT	SVRDY	A_RDY	ALM	
0x0031	MSTR	-	-	-	$\begin{gathered} \mathrm{MOUT}_{-} \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { MOUT_- } \\ 2 \end{gathered}$	$\begin{gathered} \mathrm{MOUT}_{-} \end{gathered}$	$\begin{gathered} \mathrm{MOUT}_{-} \\ 0 \end{gathered}$	
0x0039	$\begin{gathered} \text { ZOUT_ }_{8} \end{gathered}$	$\underset{7}{\text { ZOUT_}_{-}}$	$\begin{gathered} \text { ZOUT_ }^{2} \\ \hline \end{gathered}$	$\begin{gathered} \text { ZOUT_ }_{5} \end{gathered}$	$\begin{gathered} \text { ZOUT_ }_{4} \end{gathered}$	$\begin{gathered} \text { ZOUT_ }_{3} \end{gathered}$	$\begin{gathered} \text { ZOUT_ }_{2} \\ \hline \end{gathered}$	$\begin{gathered} \text { ZOUT_ }_{1} \end{gathered}$	

Note : Coil Starting Address = Coil Number - 1
Coil Number $=33$ to 64
"-"means reservation

- Coil Number Bit Data - Input allotment2

Refer to the coil input specification for explanation of each bit.

Coil Number (Hex)	Bit Data								
	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Remarks
0×0041	-	-	-	-	-	-	-	CSET	
0×0049	-	-	-	-	-	-	-	-	

Note : Coil Starting Address = Coil Number - 1
Coil Number $=65$ to 80
"-"means reservation. Always set up 0 .

- Coil Number Bit Data - Output allotment3

Coil Number (Hex)	Bit Data								
	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
0×0061	-	-	-	-	-	-	-	-	
0×0069	-	-	-	-	-	-	-	-	

Note : Coil Starting Address = Coil Number - 1
Coil Number = 97 to 112
"-"means reservation

- The example of a coil read-out

When general purpose input0 to 3 of the driver with Slave Address 1 are read, the status of the general purpose input are as follows;

	INPUT_3	INPUT_2	INPUT_1	INPUT_0
Coil Number	0x002C	0x002B	0x002A	0x0029
Coil Status	OFF	ON	OFF	ON

Request:	Example (Hex)
Slave Address	0×01
Function code	0×01
Coil Starting Address Hi	0×00
Coil Starting Address Lo	0×28
Quantity of Output Hi	0×00
Quantity of Output Lo	0×04
CRC-16 Lo	$0 \times \mathrm{BD}$
CRC-16 Hi	$0 \times \mathrm{C} 1$

Normal Response:	Example (Hex)
Slave Address	0×01
Function code	0×01
Byte Count	0×01
Coil Status	0×05
CRC-16 Lo	0×91
CRC-16 Hi	$0 \times 8 \mathrm{~B}$

- Example: State when coil start address $=0 \times 0028$ and coil number $=4$

It is as follows when INPUT_0 (coil number $=0 \times 0029$) of a coil is set to LSB.
The bit besides the range of the number of coils $(=4)$ is performed zero padding (=OFF).

	Bit Data							
	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
Coil Number	0×0030	$0 \times 002 F$	0x002E	0x002D	0x002C	$0 \times 002 B$	$0 \times 002 A$	0×0029
Coil Status	OFF	OFF	OFF	OFF	OFF	ON	OFF	ON

- Coil Number List1 (Input Allocation1)

Coil Number (Hex)	Abbreviation	Description	R/W	Remarks
0x0001	S-ON	Servo ON/OFF direction bit	R/W	
0x0002	RUN	Point startup direction bit	R/W	
0x0003	ZRT	Home position transfer direction bit	R/W	
0x0004	+JOG	Forward rotation manual feed direction bit	R/W	
0x0005	-JOG	Reverse rotation manual feed direction bit	R/W	
0x0006	RAP	Fast/slow feed switching direction bit	R/W	
0x0007	ARST	Alarm/error clearing direction bit	R/W	
0x0008	CACL	Point transfer cancellation bit	R/W	
0x0009	OVRD_0	Override direction bit	R/W	
0x000A	OVRD_1	Override direction bit	R/W	
0x000B	OVRD_2	Override direction bit	R/W	
0x000C	OVRD_3	Override direction bit	R/W	
0x000D	+1step	Forward rotation one-step feed direction bit	R/W	
0x000E	-1step	Reverse rotation one-step feed direction bit	R/W	
0x000F	IRUN	Interrupt startup direction bit	R/W	
0x0010	M_FIN	M output handshake input	R/W	
0x0011	BATCLR	Battery alarm clear direction bit	R/W	
0x0012	EXT_E	External error	R/W	
0x0013	BRK_FREE	Brake release direction bit	R/W	
0x0014	HOME	Home position possible direction bit	R/W	
0x0015	SDN	Return-to-original slowdown direction bit	R/W	
0×0016	+OT	Forward over travel	R/W	
0x0017	-OT	Reverse over travel	R/W	
0x0018	E_STR	External data setting	R/W	
0x0019	$\mathrm{IN}(1)$	Point number direction bit (This is valid for point transfer.)	R/W	0 to 253
0x001A	$\mathrm{IN}(2)$		R/W	
0x001B	$\mathrm{IN}(4)$		R/W	
0x001C	$\mathrm{IN}(8)$		R/W	
0x001D	$\mathrm{IN}(16)$		R/W	
0x001E	$\mathrm{IN}(32)$		R/W	
0x001F	$\mathrm{IN}(64)$		R/W	
0x0020	IN(128)		R/W	

- Coil Number List2 (Output Allocation1)

Coil Number (Hex)	Abbreviation	Description	R/W	Remarks
0x0021	NCRDY	Controller ready output	R	
0x0022	HBON	Holding brake excitation timing output	R	
0x0023	ERR	Error output	R	
0x0024	EXT	External operation mode output	R	
0x0025	MOVE	Point in motion output	R	
0x0026	PFIN	Point positioning completion output	R	
0x0027	INPS	In-position output	R	
0x0028	WAR (ZFIN)	Battery warning output (This is a return to origin completion signal for the incremental sensor.)	R	
0x0029	ALM	Alarm output	R	
0x002A	ARDY	Amp ready output	R	
0x002B	SVRDY	Servo ready output	R	
0x002C	SVACT	Servo ON output	R	
0x002D	IN_STOP	Butting output	R	
0x002E	IN_FEED	During move. output	R	
0x002F	T_LIM_FLG	Torque limit in operation output	R	
0x0030	C_RDY	Fixed excitation signal	R	
0x0031	MOUT_0	M output 0	R	
0x0032	MOUT_1	M output 1	R	
0x0033	MOUT_2	M output 2	R	
0x0034	MOUT_3	M output 3	R	
0x0035	-	(Reserved)	R	
0x0036	-	(Reserved)	R	
0x0037	-	(Reserved)	R	
0x0038	MSTR	M output function handshake output	R	
0x0039	ZOUT_1	Zone output 1	R	
0x003A	ZOUT_2	Zone output 2	R	
0x003B	ZOUT_3	Zone output 3	R	
0x003C	ZOUT_4	Zone output 4	R	
0x003D	ZOUT_5	Zone output 5	R	
0x003E	ZOUT_6	Zone output 6	R	
0x003F	ZOUT_7	Zone output 7	R	
0x0040	ZOUT_8	Zone output 8	R	

- Coil Number List3 (Input Allocation2)

Coil Number (Hex)	Abbreviation	Description	R/W	Remarks
0×0041	CSET	Fixed excitation start signal	R/W	
0×0042 to 0×0050	-	(Reserved)	R/W	

- Coil Number List4 (Output Allocation2)

Coil Number (Hex)	Abbreviation	Description	R/W	Remarks
0x0061 to 0×0070	-	(Reserved)	R	

Coil Input/Output Specification

- Coil input specification

Coil No. (Hex)	Signal name	Code	Conditions for input (Restrictions)	Outline of the specifications
0x0001	Servo ON	S-ON	Effective at times other than move operation mode by PC and alarms.	A signal to turn ON the motor excitation. 1) When servo ON signal is turned OFF, servo motor excitation becomes OFF into free status. 2) Motor axis cannot be driven during servo OFF. Servo OFF must be while the motor axis is fixed. 3) When servo ON signal is turned OFF, holding brake excitation timing output (HBON) turns OFF.
0x0002	Start	RUN	1) Not acceptable when other input signals (ZRT, +JOG/-JOG, +1STEP / -1STEP, CACL) are ON. 2) Both MOVE and PFIN outputs must be OFF for points to newly move. (Not acceptable during movement) 3) Acceptable only at servo "ON" status (8-segment LED displays a rotating character of 8) and at external operation (operated from CN1).	A signal to start point move operations. 1) Starts at the edge of 0 (OFF) $\rightarrow 1$ (ON). 2) Moves to specified point by point input ON at start reception. 3) When start signal is turned OFF during operation, it decelerates and stops momentarily. When start signal is turned ON again, continues point move. 4) Start signal is for positioning complete. (Keep ON status until PFIN turns ON.) Note) Point move in this chapter includes continuous point move.
0x0003	Homing start	ZRT	1) Not acceptable when other input signals (RUN, +JOG/-JOG, 1STEP / -1STEP, CACL) are ON. 2) Both MOVE and PFIN outputs must be OFF for points to newly move. (Not acceptable during movement.) 3) Acceptable only at servo "ON" status (8-segment LED displays a rotating character of 8) and at external operation (operated from CN1).	Start signal for home-position start. - When an incremental encoder is used. 1) Starts return-to-zero operation at the edge of 0 (OFF) $\rightarrow 1$ (ON) 2) Homing start signal must be kept $O N$ until homing operation is complete (PFIN signal turns ON). 3) At homing operation, if homing start signal is turned OFF while high speed movement, it decelerates and stops into a temporary stop status (feed hold). And when homing start signal is turned ON again, resumes the homing operation. When in the low move mode, even if homing start signal is turned OFF, temporary stop status may not occur. - When an absolute encoder is used. 1) Starts homing operation at the edge of 0 (OFF) $\rightarrow 1$ (ON). 2) In homing operation, returns to origin-set coordinate.

Coil No. (Hex)	Signal name	Code	Conditions for input (Restrictions)	Outline of the specifications
0x0004	¢Manual feeding	+JOG	1) Not acceptable when other input signals (RUN, ZRT, +1STEP / -1STEP) are ON. 2) Do not turn ON both +JOG and -JOG signals at the same time. 3) Not acceptable when alarms or others are occurring.	A signal to move forward at communicational operation manual drive. 1) Starts moving at the edge of 0 (OFF) \rightarrow 1(ON), moves while ON and decelerates / stops at OFF. 2) When RAP signal is OFF, the speed set by parameter manual low speed(L-jog) is the feeding speed, and when ON, the speed set by parameter manual high speed ($\mathrm{H} _\mathrm{jog}$) is the feeding speed. 3) During JOG feeding, outputs of MOVE and PFIN remain OFF
0x0005	Θ Manual feeding	-JOG	1) Not acceptable when other input signals (RUN, ZRT, +1STEP / -1STEP) are ON. 2) Do not turn ON both +JOG and -JOG signals at the same time. 3) Not acceptable when alarms or others are occurring.	A signal to move backward at communicational operation manual drive. 1) Starts moving at the edge of 0 (OFF) \rightarrow 1(ON), moves while ON and decelerates / stops at OFF. 2) When RAP signal is OFF, the speed set by parameter manual low speed(L-jog) is the feeding speed, and when ON, the speed set by parameter manual high speed (H j jog) is the feeding speed. 3) During JOG feeding, outputs of MOVE and PFIN remain OFF
0x0006	Manual high-velocity/ override	RAP	1) Manual high-velocity: Becomes effective for manual sending and 1 -step feed when externally operated (communication with host controller or operation via CN 1). 2) Override: Accepted when point move and return-to-origin operation.	1) Switches high/low velocity when manually operating. Switches amount of move and velocity at 1 -step feed. 2) Performs each moving at the velocity with parameter (Ovrid)-set multiplying factor.
0x0007	Alarm reset	ARST	1) Effective at the time alarm / error.	A signal to release alarms/errors at alarm/error status. 1) Reset the alarms/errors after their causes have been eliminated. 2) Some alarms may not be released by this signal depending on the contents.
0x0008	Cancel	CACL	Effective only at move by RUN, ZRT, +1step /-1step.	A signal to cancel the point move, home position return, 1 step feeding, and make other move possible. 1) During point move, home-position return and 1step feeding, turns into CACL positioning status by CACL_ON. 2) When point move, return-to-zero and 1 step feeding signals are turned OFF during CACL positioning status, and when CACL signal is turned OFF, operations are aborted (invalid) and other moves are possible.

Coil No. (Hex)	Signal name	Code	Conditions for input (Restrictions)	Outline of the specifications
0x0009	Over ride	$\begin{gathered} \text { OVRD } \\ 0 \\ \hline \end{gathered}$	Over ride: Acceptable at point move and return-to-zero.	Setting of an override 0 to the override 15 is chosen in this 4 -bit input. Moves by each multiple rate speed set by parameter (Ovrid).
0x000A		$\begin{gathered} \mathrm{OVRD} \\ 1 \end{gathered}$		
0x000B		$\begin{gathered} \text { OVRD } \\ \hline \end{gathered}$		
0x000C		OVRD		
0x000D	+1 step feeding	+1step	1) Not acceptable when other input signals (RUN, ZRT, +JOG/-JOG, CACL) are ON. 2) Do not input both +1step and -1step signals at the same time.	A signal to move forward at communicational operation fixed amount feeding. 1) Starts moving at the edge of 0 (OFF) $\rightarrow 1$ (ON), and moves by the amount set by parameter. 2) When RAP signal is OFF, moves by the amount of "L_stp" at manual low speed. When RAP signal is ON, moves by the amount of "H_stp" at manual high speed.
0x000E	-1 step feeding	-1step	1) Not acceptable when other input signals (RUN, ZRT, +JOG/-JOG, CACL) are ON. 2) Do not input both +1 step and -1step signals at the same time.	A signal to move backward at communicational operation fixed pulse feeding. 1) Starts moving at the edge of Open(OFF) \rightarrow Close(ON), and moves by the amount set by parameter. 2) When RAP signal is OFF, moves by the amount of "L_stp" at manual low speed. When RAP signal is ON, moves by the amount of "H_stp" at manual high speed.
0x000F	Interruption start	IRUN	1) Effective at external operation mode. 2) Can operate only while point move.	A signal to move to interruption point during point move. 1) During point move, moves to interruption point set in the point data which is being executed at the edge of interruption start 0(OFF) \rightarrow 1(ON). 2) Interruption move during interruption move is impossible.
0x0010	MFIN	M_FIN	Effective at both PC operation and communication operation.	A signal to shake hands with M output (MSTR). Turn the MFIN input 0 (OFF) $\rightarrow 1$ (ON) with the M output signal (MSTR) ON to make a handshake with M output. When M output type (M _typ) is " 1 ", use this MFIN input for handshake to be performed. If moved by changing speed, even when M output type is " 1 ", handshake is not performed.

Coil No. (Hex)	Signal name	Code	Conditions for input (Restrictions)	Outline of the specifications
0x0011	Battery Alarm Clear (Absolute encoder clear)	$\begin{aligned} & \text { BAT } \\ & \text { CLR } \end{aligned}$	1) Effective during the battery alarm.	A release signal during battery alarm output status. 1) Clear the battery alarm after removing occurrence causes. 2) It is necessary to reset the alarm separately for return. For details, please refer to Chapter 8 "maintenance".
0x0012	External error	EXT-E		Normally closed contact input(Sw2:standard setting) When inputting Open (OFF), alarm is issued.
0x0013	Forced Brake Release	BRK FREE		Releases holding brake compulsorily during Holding Brake operation.
0x0014	Home Position Set	HOME	The input must have been established at start time.	An input of a starting signal performs a starting point set When this signal is (ON)
0x0015	Slowdown before Home	SDN	1) When incremental encoder is used, this is effective during home-position return operation. 2) Ignored when absolute encoder is used.	1) During home-position return operation with an incremental sensor used, 0(OFF) makes the amplifier decelerate (Home-position return low speed). 2) During low speed movement returning to home, home-position return is completed by 0 (OFF) $\rightarrow 1$ (ON). How to return to zero; - Completed while 0(OFF) $\rightarrow 1$ (ON) of SDN. - Completed when searching encoder C phase output signal after Open (OFF) \rightarrow Close (ON) of SDN. These can be selected by a parameter for home-position return type (Z_typ).
0x0016	+Over travel	+OT	Always acceptable.	Normally closed contact input (Sw2: standard setting) Reverse move is prohibited by Inputting Open (OFF) and stops suddenly. After sudden stop, servo is OFF.
0×0017	-Over travel	-OT	Always acceptable.	Normally closed contact input (Sw2: standard setting) Reverse move is prohibited by Inputting Open (OFF) and stops suddenly. After sudden stop, servo is OFF.
0x0018	External data setting	E_STR		Normally opened contact input By signal selection, it is used for external datasetting.

Coil No. (Hex)	Signal name	Code	Conditions for input (Restrictions)	Outline of the specifications

- Coil output specification

$\begin{gathered} \text { Coil No. } \\ \text { (Hex) } \end{gathered}$	Signal name	Code	Conditions for output (Restrictions)	Outline of the specifications
0x0021	NC ready	NC RDY	1) $1(\mathrm{ON})$ approx. 0.5 sec after power ON. 2) 0 (OFF) when main power is OFF and at alarms.	1) $1(\mathrm{ON})$ when control and main power is established, with no alarms, and position loop is formed. 2) During $1(\mathrm{ON})$, operations of point positioning move, home-position return, manual feeding and 1 step feeding are possible. NC ready is also 1 (ON) when servo ON input signal is 0 (OFF).
0x0022	Holding brake excitation timing output	HBON	(TR_ON) while motor is exciting.	Outputs the holding brake excitation (release) timing. At TR_ON, holding brake is excited (released).
$\begin{gathered} 00 \times 002 \\ 3 \end{gathered}$	Error	ERR	Outputs at the following errors. $\left[\begin{array}{l} \text { +Soft limit } \\ \text {-Soft limit } \\ \text { Unregistered point } \\ \text { specification starting } \end{array}\right.$	1(ON) at error state.
0x0024	External operation mode output	EXT	1) 1(On) when external operation is effective. 2) 0 (OFF) at PC operation.	1) $1(\mathrm{ON})$ when external operation input signal can be used. 2) 0 (OFF) when operated by PC (in the PC mode). Do not operate externally this time.
0x0025	While operation	MOVE	1) 0 (OFF) when power turns ON. 2) 0 (OFF) at alarms. 3) $1(\mathrm{ON})$ during point move (from the time of move completed until turning OFF the start signal (RUN)). 4) $1(\mathrm{ON})$ during home-position return (until turning OFF the homing signal (ZRT)). 5) $1(\mathrm{ON})$ during 1 step feeding (from the time of move completed until turning OFF ± 1 STEP signal). 6) 0 (OFF) during manual feeding	1) $1(\mathrm{ON})$ when receiving start input (RUN) at the time of point positioning move. When move has been complete, $1(\mathrm{ON})$ is maintained until start signal is turned OFF. The same for home-position return and 1 step feeding; When move has been complete, $1(\mathrm{ON})$ is maintained until homing signal or ± 1 STEP signal is turned OFF. 2) When signals of MOVE and PFIN are 1 (ON), operation input singnals (start, homing, manual feeding and 1 step feeding) are not accepted.
0x0026	Positioning complete	PFIN	1) 0 (OFF) when power turns ON. 2) 0 (OFF) at alarms. 3) 1 (ON) from the time of move completed until turning OFF the start signal (RUN) at point move. 4) 1 (ON) from the time of move completed until turning OFF the homing signal (ZRT) at home-position return operation. 5) $1(\mathrm{ON})$ from the time of move completed until turning OFF ± 1 STEP signal at 1 step feeding operation. 6) 0 (OFF) at manual feeding.	1) $1(\mathrm{ON})$ when positioning is complete at point positioning move. When positioning is complete, $1(\mathrm{ON})$ is maintained until start signal is turned OFF. 2) $1(\mathrm{ON})$ when home-position return is complete at homing operation. When home-position return is complete, $1(\mathrm{ON})$ is maintained until homing signal is turned OFF. 3) $1(\mathrm{ON})$ when move is complete at 1 step feeding. When move is complete, $1(\mathrm{ON})$ is maintained until ± 1 STEP signal is turned OFF. 4) When signals of PFIN and MOVE are 1(ON), input signals for other operations are not accepted.

Coil No. (Hex)	Signal name	Code	Conditions for output (Restrictions)	Outline of the specifications
0x0027	In-position	INPS	1) $1(\mathrm{ON})$ if within the in-position width when power turns ON. 2) TR_OFF generally during move. 1(ON) when moving at low speed within the in-position width. 3) 0 (OFF) during alarms.	1) $1(\mathrm{ON})$ when current position is an ideal position within \pm in-position width. 2) 0 (OFF) once if moved outside the in-position width by an external means while stopping in the status of in-position output ON. 1(ON) again when entering inside the in-position width by corrective actions. 3) In-position width is set by system in-position width parameter.
	Warning output (When absolute encoder is used.)	WAR	When ABS encoder is used. $1(\mathrm{ON})$ in the status of battery warning.	When ABS-E encoder is used. This warning output is $1(\mathrm{ON})$ when the voltage of absolute encoder battery lowers and warning is output from the sensor. Note: There may be cases encoder cannot detect due to battery voltage drop characteristic.
0x0028	Homing complete (When incremental encoder is used.)	ZFIN	When incremental encoder is used. 1) 0 (OFF) is maintained when power turns ON and at alarms. 2) $1(\mathrm{ON})$ when home-position return is complete.	When incremental encoder is used. 1) After power turned ON or alarms were released, this is $1(\mathrm{ON})$ when home-position return operation, which matches the machine coordinate and unit coordinate, is complete. After that $1(\mathrm{ON})$ is maintained until another alarm or power shut off. 2) When power turns ON again or alarm is released, $0(\mathrm{OFF})$ is maintained unless home-position return operation is performed again.

Coil No. (Hex)	Signal name	Code	Conditions for output (Restrictions)	Outline of the specifications
0x0029	Alarm	ALM	Outputs at alarm.	1(ON) at alarm state.
0x002A	Power ON ready output	A_RDY	1(ON) within 2 sec after control power ON.	TR_ON when amplifier becomes the state that can be turned ON the main power supply, after control power is established.
0x002B	Servo ready output	SVRDY		The output is ON during Servo Ready complete.
0x002C	Servo on output	SVACT	Outputs at servo on.	$1(\mathrm{ON})$ at servo on state.
0x002D	Output in strike	$\begin{gathered} \mathrm{IN} \\ \mathrm{STOP} \end{gathered}$	Outputs during strike operation.	On during actual strike operation when strike and move mode.
0x002E	During move. output	$\underset{\text { ED }}{\text { IN_FE }}$		The output is ON During move.
0x002F	Torque limit in operation output	$\begin{gathered} \text { T_LIM } \\ \text { FLG } \end{gathered}$		The output is ON during torque limiting
0x0030	Fixed excitation signal	C_RDY		After completion of fixed excitation, the fixed excitation completion signal (CRDY) is output.

Coil No. (Hex)	Signal name	Code	Conditions for output (Restrictions)	Outline of the specifications
0x0031	M Output	MOUT_0	Three parameters of Code, Type and Delay opt functions.	4-bit outputs from " 0000 " to " 1111 ". For details, please refer to explanation of M output of Chapter 4 "Positioning Functions".
0x0032		MOUT_1		
0x0033		MOUT_2		
0x0034		MOUT_3		
0x0035	(Reserved)	-		
0x0036	(Reserved)	-		
0×0037	(Reserved)	-		
0x0038	M Output Function Hand Shake Output	MSTR	MSTR	Output is in M-output handshake mode. (For details on "M output", see chapter 4 "Positioning Function")
0x0039	Zone output	ZOUT_1	Read out the zone that falls within the range of setting coordinate area on the forward side and the negative side.	$1(\mathrm{ON})$ when in the range of the coordinates on the forward side and negative side set in area 1.
0x003A		ZOUT_2		$1(\mathrm{ON})$ when in the range of the coordinates on the forward side and negative side set in area 2.
0x003B		ZOUT_3		$1(\mathrm{ON})$ when in the range of the coordinates on the forward side and negative side set in area 3.
0x003C		ZOUT_4		$1(\mathrm{ON})$ when in the range of the coordinates on the forward side and negative side set in area 4.
0x003D		ZOUT_5		$1(\mathrm{ON})$ when in the range of the coordinates on the forward side and negative side set in area 5 .
0x003E		ZOUT_6		$1(\mathrm{ON})$ when in the range of the coordinates on the forward side and negative side set in area 6.
0x003F		ZOUT_7		$1(\mathrm{ON})$ when in the range of the coordinates on the forward side and negative side set in area 7.
0x0040		ZOUT_8		$1(\mathrm{ON})$ when in the range of the coordinates on the forward side and negative side set in area 8.

- 03 (0×03) Read Holding Registers

This function code is used to read the contents of a contiguous block of holding registers.
Request

Slave Address	1byte	0×01 to 0xF7 (Note1)
Function code	1byte	0×03
Register Starting Address Hi	2byte	0×0000 to 0xFFFF (Note2)
Register Starting Address Lo		2byte
Quantity of Registers Hi		
Quantity of Registers Lo	2byte	
CRC-16 Lo		
CRC-16 Hi		

Note1: Broadcasting cannot be performed.
Note2: Set the address of registers to read, such as a parameter, a monitor, and point data, to a register start address.

Normal Response

Slave Address	1byte	0×01 to 0xF7
Function code	1byte	0×03
Byte Count	1byte	2 *N (Note3)
Register Value	N *2byte	
CRC-16 Lo	2byte	
CRC-16 Hi		

Note3: Quantity of Registers.
Error Response

Slave Address	1 byte	0×01 to 0xF7
Function code	1 byte	0×83
Exception code	1 byte	0×01 (Illegal Function) 0×02 (Illegal Data Address) 0×03 (Illegal Data Value) 0×04 (Slave Device Failure)
CRC-16 Lo	2 byte	
CRC-16 Hi		

- The example of read-out of holding registers: Register start address= 0×4012, quantity of registers $=2$

When actual position of the driver with Slave Address 1 are read, the value of the actual position are as follows;

Register Number (Hex)	Name	Value
0×4012	Actual Position (User Coordinate Hi)	0×1234
0×4013	Actual Position (User Coordinate Lo)	0×5678

Request:	Example (Hex)
Slave Address	0×01
Function code	0×03
Register Starting Address Hi	0×40
Register Starting Address Lo	0×12
Quantity of Registers Hi	0×00
Quantity of Registers Lo	0×02
CRC-16 Lo	0×71
CRC-16 Hi	$0 \times C E$

Normal Response:	Example (Hex)
Slave Address	0×01
Function code	0×03
Byte Count	0×04
Register Value Highest	0×12
Register Value Middle-Hi	0×34
Register Value Middle-Lo	0×56
Register Value Lowest	0×78
CRC-16 Lo	0×81
CRC-16 Hi	0×07

- 05 (0x05) Write Single Coil

Writes into single coil.

Request

Slave Address	1byte	0x01 to 0xF7 (Note1)
Function code	1byte	0x05
Coil Output Address Hi	2byte	Area $1=0 \times 0000-0 \times 001 \mathrm{~F}$ (Note 2) Area $2=0 \times 0040-0 \times 004 F$ (Note 2)
Coil Output Address Lo		
Output value Hi	2byte	0×0000 (OFF) or 0xFF00 (ON)
Output value Lo		
CRC-16 Lo	2 byte	
CRC-16 Hi		

Note1: When broadcasting is performed, no response is returned.
Note2: Coil Output Address = Coil Number - 1
Coil Number = 1-32 (Area1), 65-80 (Area 2)
Normal Response

Slave Address	1byte	0×01 to 0xF7
Function code	1byte	0x05
Coil Output Address Hi	2 byte	Area $1=0 \times 0000-0 x 001 F$ Area 2=0x0040-0x004F
Coil Output Address Lo		
Output value Hi	2 byte	0x0000 (OFF) or 0xFF00 (ON)
Output value Lo		
CRC-16 Lo	2byte	
CRC-16 Hi		

Error Response

Slave Address	1byte	0×01 to 0xF7
Function code	1byte	0×85
Exception code	1byte	0×01 (Illegal Function) 0×02 (Illegal Data Address) 0×03 (Illegal Data Value) 0×04 (Slave Device Failure)
CRC-16 Lo	2byte	
CRC-16 Hi		

06 (0x06) Write Single Register
Data is written in the holding register, which parameters specified. (Servo Gain, Coil Input)
Cannot write into holding registers, such as point data.

Request

Slave Address	1byte	0×01 to 0xF7 (Note1)	
Function code	1byte	0×06	
Register Starting Address Hi			

Note1: When broadcasting is performed, no response is returned.
Note2: Set an effective address to the register start address.
When invalid address is set up, an exception code (0×02) is sent back as an abnormal response.
Note3: Set the maximum and minimum value of each parameter within the limits to register value.
When the value besides the range is set up, an exception code (0×03) is sent back as an abnormal response.

Normal Response

Slave Address	1byte	0x01 to 0xF7
Function code	1byte	0x06
Register Starting Address Hi	2 byte	0x0008 to 0x0020 (Servo Gain) 0x0080 to 0x0081 (Coil Input)
Register Starting Address Lo		
Register Value Hi	2 byte	0x0000 to 0xFFFFF
Register Value Lo		
CRC-16 Lo	2 byte	
CRC-16 Hi		

Error Response

Slave Address	1byte	0×01 to 0xF7
Function code	1byte	0×86
Exception code	1byte	0×01 (Illegal Function) 0×02 (Illegal Data Address) 0×03 (Illegal Data Value) 0×04 (Slave Device Failure)
CRC-16 Lo	2byte	
CRC-16 Hi		

- 08 (0x08) Diagnostic (Serial Line only)

Used for a communication check between master and slaves.
Request

Slave Address	1byte	0x01 to 0xF7 (Note1)
Function code	1byte	0x08
Sub-function Hi	2 byte	0x0000 (Note2)
Sub-function Lo		
Data Hi	2byte	Any (Note3)
Data Lo		
CRC-16 Lo	2byte	
CRC-16 Hi		

Note1: Broadcasting cannot be performed.
Note2: Set 0x0000 (Return Query Data) to the sub-function of diagnosis.
It does not support any other sub-function.
Note3: Any value can be used as the test data.
Normal Response

Slave Address	1byte	0×01 to 0xF7
Function code	1byte	0×08
Sub-function Hi	2byte	0×0000
Sub-function Lo		Any (Echo Request Data)
Data Hi		
Data Lo	2byte	
CRC-16 Lo		
CRC-16 Hi		

Error Response

Slave Address	1byte	0×01 to 0xF7
Function code	1byte	0×88
Exception code	1byte	0×01 (Illegal Function) 0×03 (Illegal Data Value) 0×04 (Slave Device Failure)
CRC-16 Lo	2 2byte	
CRC-16 Hi		

- 16 (0×10) Write Multiple Registers

Writes data to multiple contiguous holding registers. (Servo Gain, Coil Input, JOG-related Data, Point Data)
Request

Slave Address	1byte	0x01 to 0xF7 (Note1)
Function code	1byte	0x10
Register Starting Address Hi		0×0008 to 0×0020 (Servo gain) 0x0080 to 0x0082 (Coil-input)
Register Starting Address Lo		0x1000 to 0x1003 (JOG-related Data) 0×8000 to 0x9FBF (Point data) (Note2)
Quantity of Registers Hi		0×0001 to 0×0018 (Servo gain) 0x0001 to 0x0003 (Coil-input)
Quantity of Registers Lo		0x0001 to 0x0004 (JOG-related Data) 0x0001 to 0x0010 (Point data)
Byte Count	1byte	2 * N (Note3)
Registers Value	N * 2byte	(Note4)
CRC-16 Lo	2byte	
CRC-16 Hi		

Note1: When broadcasting is performed, no response is returned.
Note2: Set an effective address to the register start address.
When invalid address is set up, an exception code (0x02) is sent back as an abnormal response.
Note3: $\mathrm{N}=$ Quantity of Registers.
Note4: Set the maximum and minimum value of each parameter within the limits to register value.
When the value besides the range is set up, an exception code (0×03) is sent back as an abnormal response.

Normal Response

Slave Address	1byte	0×01 to 0xF7
Function code	1byte	0×10
Register Starting Address Hi	2byte	0×0008 to 0x0020 (Servo gain) 0×0080 to 0x0082 (Coil-input) 0×1000 to 0x1003 (JOG-related Data) 0×8000 to 0x9FBF (Point data)
Register Starting Address Lo	2byte	0×0001 to 0x0018 (Servo gain) 0×0001 to 0x0003 (Coil-input) 0×0001 to 0x000 (JOG-related Data) 0×0001 to 0x0010 (Point data)
Quantity of Registers Hi		
Quantity of Registers Lo	2byte	
CRC-16 Lo		
CRC-16 Hi		

Error Response

Slave Address	1byte	0×01 to 0xF7
Function code	1byte	0×90
Exception code	1byte	0×01 (Illegal Function) 0×02 (Illegal Data Address) 0×03 (Illegal Data Value) 0×04 (Slave Device Failure)
CRC-16 Lo	2byte	
CRC-16 Hi		

Parameter

- Parameter address range (0×0001 to 0×3 FFF)

The parameter edit accesses this domain of a register number.

$\begin{aligned} & \text { Bit } \\ & 15 \end{aligned}$	$\begin{aligned} & \text { Bit } \\ & 14 \end{aligned}$	$\begin{aligned} & \text { Bit } \\ & 13 \end{aligned}$	$\begin{aligned} & \text { Bit } \\ & 12 \end{aligned}$	$\begin{gathered} \text { Bit } \\ 11 \end{gathered}$	$\begin{aligned} & \mathrm{Bit} \\ & 10 \end{aligned}$	$\begin{gathered} \text { Bit } \\ 9 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 8 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 7 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 6 \end{gathered}$	$\begin{gathered} \mathrm{BIt} \\ 5 \end{gathered}$	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0	0	Parameter Setting Register Address selection													

- Register address list - Parameter 1 (Servo Gain)

Register Address (Hex)	Name	Standard value	Unit	Setting range	R/W
$\begin{gathered} 0 \times 0000 \\ \text { to } \\ 0 \times 0007 \\ \hline \end{gathered}$	(Reserved)	-	-	-	R
0x0008	Position Loop Proportional Gain 1	30	1/s	1 to 3000	R/W
0x0009	Position Loop Proportional Gain 2	30	1/s	1 to 3000	R/W
0x000A	Position Loop Proportional Gain 3	30	1/s	1 to 3000	R/W
0x000B	Position Loop Proportional Gain 4	30	1/s	1 to 3000	R/W
0x000C	Position Loop Integral Time Constant 1	10000	0.1 ms	5 to 10000	R/W
0x000D	Position Loop Integral Time Constant 2	10000	0.1 ms	5 to 10000	R/W
0x000E	Position Loop Integral Time Constant 3	10000	0.1 ms	5 to 10000	R/W
0x000F	Position Loop Integral Time Constant 4	10000	0.1 ms	5 to 10000	R/W
0x0010	Velocity Loop Proportional Gain 1	50	Hz	1 to 2000	R/W
0x0011	Velocity Loop Proportional Gain 2	50	Hz	1 to 2000	R/W
0x0012	Velocity Loop Proportional Gain 3	50	Hz	1 to 2000	R/W
0x0013	Velocity Loop Proportional Gain 4	50	Hz	1 to 2000	R/W

- Register Address List - Parameter 2 (Servo Gain)

Register address (Hex)	Name	Standard value	Unit	Setting range	R/W
0x0014	Velocity Loop Integral Time Constant 1	200	0.1 ms	5 to 10000	R/W
0x0015	Velocity Loop Integral Time Constant 2	200	0.1 ms	5 to 10000	R/W
0x0016	Velocity Loop Integral Time Constant 3	200	0.1 ms	5 to 10000	R/W
0x0017	Velocity Loop Integral Time Constant 4	200	0.1 ms	5 to 10000	R/W
0x0018	Load moment-of-inertia ratio 1 (Load bulk density)	100	\%	0 to 15000	R/W
0x0019	Load moment-of-inertia ratio 2 (Load bulk density)	100	\%	0 to 15000	R/W
0x001A	Load moment-of-inertia ratio 3 (Load bulk density)	100	\%	0 to 15000	R/W
0x001B	Load moment-of-inertia ratio 4 (Load bulk density)	100	\%	0 to 15000	R/W
0x001C	Torque Command Filter 1	600	Hz	1 to 2000	R/W
0x001D	Torque Command Filter 2	600	Hz	1 to 2000	R/W
0x001E	Torque Command Filter 3	600	Hz	1 to 2000	R/W
0x001F	Torque Command Filter 4	600	Hz	1 to 2000	R/W
0x0020	Time constant of position command smoothing	0	1 ms	0 to 1000	R/W

【Caution】Write in this area involves storing in non-volatile memory (EEPROM).
Do not use for rewriting each moving frequently.

- Register Address List - Parameter 3 (Coil Input)

Register Address (Hex)	Name	Standard value	Unit	Setting range	R/W
0×0080	Coil Input Group 1	-	Bit	0 to 0xFFFF	R/W
0×0081	Coil Input Group 2	-	Bit	0 to 0xFFFF	R/W
0×0082	Coil Input Group 3	-	Bit	0 to 0xFFFF	R/W

Register Address $=0 \times 0080$ (Write/Read)

Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8
M_FIN	IRUN	-1step	+1step	OVRD_3	OVRD_2	OVRD_1	OVRD_0
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
CACL	ARST	RAP	-JOG	+JOG	ZRT	RUN	S-ON

Register Address $=0 \times 0081$ (Write/Read)

Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8
$\begin{gathered} \mathrm{IN} \\ (128) \end{gathered}$	$\begin{gathered} \hline \mathrm{IN} \\ (64) \end{gathered}$	$\begin{gathered} \mathrm{IN} \\ (32) \end{gathered}$	$\begin{gathered} \hline \mathrm{IN} \\ (16) \end{gathered}$	$\begin{aligned} & \text { IN } \\ & (8) \end{aligned}$	$\begin{aligned} & \hline \mathrm{IN} \\ & (4) \end{aligned}$	$\begin{aligned} & \text { IN } \\ & (2) \end{aligned}$	$\begin{aligned} & \hline \mathrm{IN} \\ & (1) \end{aligned}$
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
E_STR	-OT	+OT	SDN	HOME	BRK FREE	EXT_E	$\begin{aligned} & \text { BAT } \\ & \text { CLR } \end{aligned}$

Register Address $=0 \times 0082$ (Write/Read)

Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8
-	-	-	-	-	-	-	-
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
-	-	-	-	-	-	-	CSET

- Register address list - parameter 4 (positioning function)

Register address (Hex)	Name			Unit	Setting range	R/W
0x0C00	System velocity limit (higher order byte)			Uv	$\begin{gathered} 1 \text { to } \\ 2147483647 \end{gathered}$	R/W
	System velocity limit (lower order byte)					
0x0C02	PC operation speed limit (higher order byte)			Uv	$\begin{gathered} 1 \text { to } \\ 2147483647 \end{gathered}$	R/W
	PC operation speed limit (lower order byte)					
0x0C04	Software limit in positive direction (higher order byte)			U	$\begin{aligned} & -2147483648 \\ & \text { to } 2147483647 \end{aligned}$	R/W
	Software limit in positive direction (lower order byte)					
0x0C06	Software limit in negative direction (higher order byte)			U	$\begin{aligned} & -2147483648 \\ & \text { to } 2147483647 \end{aligned}$	R/W
	Software limit in negative direction (lower order byte)					
0x0C08	Depth of end (higher order byte)			Pulse	1 to 2147483647	R/W
	Depth of end (lower order byte)					
0x0C0A	(Reserved)			-	0	R/W
0x0C0B	System in-position width		*1	Pulse	1 to 65535	R/W
0x0C0C	System overflow (higher order byte)		*1	U	1 to 2147483647	R/W
	System overflow (lower order byte)		*1			
0x0C0E	Overflow when current limited (higher order byte)		*1	U	1 to 2147483647	R/W
	Overflow when current limited (lower order byte)		*1			
0x0C10	Amount of backlash			U	0 to 32767	R/W
0x0C11	Software limit detection and operation direction			-	$\begin{aligned} & \text { Bit7 to Bit0 } \\ & =0,1 \\ & \text { Bit15 to Bit8 } \\ & =0,1 \end{aligned}$	R/W
	Bit15 Bit8	Bit7	Bit0			
	Operation direction *1	Software limit d	tion			
0x0C12	Acceleration and deceleration constant			Uv/ms	1 to 65535	R/W
0x0C13	S-shaped curve acceleration and deceleration time			ms	0 to 32767	R/W
0x0C14	Jog-current limit in PC operation			\%	0 to 510	R/W
$0 \times 0 \mathrm{C} 15$	Return-to-origin type and direction			-	$\begin{gathered} \text { Bit7 to Bit0 } \\ =0,1 \\ \text { Bit15 to Bit8 } \\ =0,1 \end{gathered}$	R/W
	Bit15 Bit8	Bit7	Bit0			
	Return-to-origin direction	Return-to-origin				

Register address list - parameter 5 (positioning function)

Register address (Hex)	Name	Unit	Setting range	R/W
0x0C16	Return-to -origin at high speed (higher order byte)	Uv	$\begin{gathered} 1 \text { to } \\ 2147483647 \end{gathered}$	R/W
	Return-to -origin at high speed (lower order byte)			
0x0C18	Return-to -origin at low speed (higher order byte)	Uv	$\begin{gathered} 1 \text { to } \\ 2147483647 \end{gathered}$	R/W
	Return-to -origin at low speed (lower order byte)			
0x0C1A	Origin position coordinate (higher order byte)	U	$\begin{gathered} -2147483648 \\ \text { to } 2147483647 \end{gathered}$	R/W
	Origin position coordinate (lower order byte)			
0x0C1C	Origin-offset value (higher order byte)	U	$\begin{gathered} -2147483648 \\ \text { to } 2147483647 \end{gathered}$	R/W
	Origin-offset value (lower order byte)			
0x0C1E	(Reserved)	-	0	R/W
0x0C1F	Origin in-position width *1	Pulse	1 to 65535	R/W
0x0C20	+STROKE (used only for infinite coordinate) (higher order byte)	U	$\begin{aligned} & -2147483648 \\ & \text { to } 2147483647 \end{aligned}$	R/W
	+STROKE (used only for infinite coordinate) (lower order byte)			
0x0C22	Effective stroke length of absolute encoder (higher order byte)*2	U	$\begin{aligned} & -2147483648 \\ & \text { to } 2147483647 \end{aligned}$	R/W
	Effective stroke length of absolute encoder (lower order byte)*2			
0x0C24	Range (1) in negative direction (higher order byte)	U	$\begin{gathered} -2147483648 \\ \text { to } 2147483647 \end{gathered}$	R/W
	Range (1) in negative direction (lower order byte)			
0x0C26	Range (1) in positive direction (higher order byte)	U	$\begin{gathered} -2147483648 \\ \text { to } 2147483647 \end{gathered}$	R/W
	Range (1) in positive direction (lower order byte)			
0x0C28	Range (2) in negative direction (higher order byte)	U	$\begin{gathered} -2147483648 \\ \text { to } 2147483647 \end{gathered}$	R/W
	Range (2) in negative direction (lower order byte)			
0x0C2A	Range (2) in positive direction (higher order byte)	U	$\begin{gathered} -2147483648 \\ \text { to } 2147483647 \\ \hline \end{gathered}$	R/W
	Range (2) in positive direction (lower order byte)			
0x0C2C	Range (3) in negative direction (higher order byte)	U	$\begin{gathered} -2147483648 \\ \text { to } 2147483647 \end{gathered}$	R/W
	Range (3) in negative direction (lower order byte)			
0x0C2E	Range (3) in positive direction (higher order byte)	U	$\begin{gathered} -2147483648 \\ \text { to } 2147483647 \end{gathered}$	R/W
	Range (3) in positive direction (lower order byte)			
0x0C30	Range (4) in negative direction (higher order byte)	U	$\begin{gathered} -2147483648 \\ \text { to } 2147483647 \end{gathered}$	R/W
	Range (4) in negative direction (lower order byte)			
0x0C32	Range (4) in positive direction (higher order byte)	U	$\begin{gathered} -2147483648 \\ \text { to } 2147483647 \\ \hline \end{gathered}$	R/W
	Range (4) in positive direction (lower order byte)			
0x0C34	Range (5) in negative direction (higher order byte)	U	$\begin{gathered} -2147483648 \\ \text { to } 2147483647 \end{gathered}$	R/W
	Range (5) in negative direction (lower order byte)			

Register address list - parameter 6 (positioning function)

| Register
 address
 (Hex) | | Name | Unit | Setting range |
| :---: | :--- | :---: | :---: | :---: | R/W

Register address list - parameter 7 (positioning function)

Register address (Hex)	Name			Unit	Setting range	R/W
0x0C4E	Override 4 and override 5			\%	$\begin{gathered} \text { Bit7 to Bit0 } \\ =1 \text { to } 255 \\ \text { Bit15 to Bit8 } \\ =1 \text { to } 255 \end{gathered}$	R/W
	Bit15 Bit8	Bit7	Bit0			
	Override5	Override4				
0x0C4F	Override 6 and override7			\%	$\begin{gathered} \text { Bit7 to Bit0 } \\ =1 \text { to } 255 \\ \text { Bit15 to Bit8 } \\ =1 \text { to } 255 \end{gathered}$	R/W
	Bit15 Bit8	Bit7	Bit0			
	Override7	Override6				
0x0C50	Override 8 and override 9			\%	$\begin{gathered} \text { Bit7 to Bit0 } \\ =1 \text { to } 255 \\ \text { Bit15 to Bit8 } \\ =1 \text { to } 255 \end{gathered}$	R/W
	Bit15 Bit8	Bit7	Bit0			
	Override9	Override8				
0x0C51	Override 10 and override 11			\%	$\begin{gathered} \text { Bit7 to Bit0 } \\ =1 \text { to } 255 \\ \text { Bit15 to Bit8 } \\ =1 \text { to } 255 \end{gathered}$	R/W
	Bit15 Bit8	Bit7	Bit0			
	Override11	Override10				
0x0C52	Override 12 and override 13			\%	Bit7 to Bit0 = 1 to 255 Bit15 to Bit8 $=1$ to 255	R/W
	Bit15 Bit8	Bit7	Bit0			
	Override13	Override12				
0x0C53	Override 14 and override 15			\%	$\begin{gathered} \text { Bit7 to Bit0 } \\ =1 \text { to } 255 \\ \text { Bit15 to Bit8 } \\ =1 \text { to } 255 \end{gathered}$	R/W
	Bit15 Bit8	Bit7	Bit0			
	Override15	Ov				
0x0C54	System division number (higher order byte)		*1	(Pulse)	1 to 131072	R/W
	System division number (lower	er byte)	*1			
0x0C56	User- division number (higher order byte)		*1	(mm)	1 to 131072	RW
	User- division number (lower order byte) *1					

- Register address list - parameter 8 (positioning function)

Register address (Hex)	Name		Unit	Setting range	R/W
0x0C58	Decimal point of velocity and position data		-	Bit7 to Bit0 $=0$ Bit15 to Bit8 $=0$ to 5	R/W
	Bit15 Bit8	Bit7 Bit0			
	Decimal point of velocity and position data	(Reserved)			
0x0C59	Setting unit		-	$\text { Bit7 to Bit0 }=0 \text { to } 1$$\text { Bit15 to Bit8 }=0$	R/W
	Bit15 Bit8	Bit7 Bit0			
	(Reserved)	Setting unit			
0x0C5A	Function switch 1		-	$\begin{gathered} 0 \times 0000 \\ \text { to } 0 \times F F F F \end{gathered}$	R/W
0x0C5B	Function switch 2		-	$\begin{gathered} 0 \times 0000 \\ \text { to } 0 \times F F F F \end{gathered}$	R/W
0x0C5C	Function switch 3		-	$\begin{gathered} 0 \times 0000 \\ \text { to } 0 \times F F F F \end{gathered}$	R/W
0x0C5D	Function switch 4		-	$\begin{aligned} & 0 \times 0000 \\ & \text { to } 0 x F F F F \end{aligned}$	R/W

*1 : When setting value is changed, control power needs to be re-turned on.
*2 : When setting value is changed, make sure to perform home position setting. If not performed, position displacement can occur.
*3 : Unit of velocity system " U_{v} " and position system "U" are determined by setting parameters (S_pls, U_pls, D_dpo, Unit) by user. Refer to page 4-40, "Please read this instruction to use positioning function for the first time."" for unit determination.
*4 : Refer to "Chapter4, positioning function, parameter group D," for the details of positioning function.

- Demand write dedicated area (From 0x1000)

The values re-written by using register in this area are effective in each updating cycle as needed.

$\begin{gathered} \text { Register address } \\ (H e x) \end{gathered}$	Name	Unit	Setting range	R/W	<Note>
0x1000	JOG-Velocity (higher order byte)	Uv	$\begin{gathered} 0 \text { to } \\ 2147483647 \end{gathered}$	R/W	1,2
	JOG-Velocity (lower order byte)				
0x1002	JOG-acceleration	$\frac{\mathrm{Uv} /}{\mathrm{ms}}$	1 to 65535	R/W	3, 4
0x1003	Position command smoothing time constant	1 ms	0 to 1000	R/W	3, 4

Note1: JOG-velocity when power supply turned on is preset to zero.
Note2: When velocity is set to zero, JOG-moving is performed at the velocity set by parameters.
Note3: When velocity is set to zero, the value set by parameter is applied to the acceleration.
Note4: Acceleration value shall be re-written prior to the setting for velocity, as once velocity is re-written, a command to immediately correspond the set velocity is generated.
Note5: The values re-written by using this register are not stored in EEPROM. Position command smoothing time constant when power supply turned on is preset to the same value as the parameters whose name has been stored in EEPROM (register address: 0x0020).
Note6: If you have changed any values of position command smoothing time constant by using this register, do not re-write the position command smoothing time constant via R_Setup Software or register address: 0x0020 without returning on control power supply. Failure to do so results in "EEPROM Checksum error" -state as parameters stored in EEPROM becomes inconsistent.

Monitor

- Monitor Address Range (0×4000 to 0x7FFF)

Read-out of monitor data accesses this domain of a register number.

$\begin{aligned} & \text { Bit } \\ & 15 \end{aligned}$	$\begin{aligned} & \text { Bit } \\ & 14 \end{aligned}$	Bit 13	Bit 12	$\begin{aligned} & \hline \text { Bit } \\ & 11 \end{aligned}$	Bit 10	$\begin{gathered} \text { Bit } \\ 9 \end{gathered}$	$\begin{gathered} \hline \mathrm{Bit} \\ 8 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 7 \end{gathered}$	$\begin{gathered} \mathrm{Bit} \\ 6 \end{gathered}$	Bit 5	$\begin{gathered} \mathrm{Bit} \\ 4 \end{gathered}$	Bit 3	$\begin{gathered} \text { Bit } \\ 2 \end{gathered}$	Bit 1	Bit 0
0	1	Monitor data register address selection													

- Register Address List - Monitor 1

Register Address (Hex)	Name	Unit	R/W
0x4000	Servo Amplifier Status (Note1)	-	R
0x4001	Warning Status (Note2)	-	R
0x4002	Velocity Monitor	min-1	R
0x4003	Velocity Command Monitor	min-1	R
0x4004	Torque Monitor	\%	R
0x4005	Torque Command Monitor	\%	R
0x4006	Regenerative Resistance Run Rate	\%	R
0x4007	Effective Torque Monitor	\%	R
0x4008	Effective Torque Monitor (Estimate)	\%	R
0x4009	Control Loop Parameter_Load moment-of-inertia ratio monitor	\%	R
0x400A	Control Loop Parameter_Position Loop Proportional Gain	s-1	R
0x400B	Control Loop Parameter_Position Loop Integral Time Constant Monitor	ms	R
0x400C	Control Loop Parameter_Speed Loop Proportional Gain Monitor	Hz	R
0x400D	Control Loop Parameter_Speed Loop Integral Time Constant Monitor	ms	R
0x400E	Control Loop Parameter_Torque Command Filter Monitor	Hz	R
0x400F	Load Troque Monitor (Estimate)	\%	R
0x4010	Alarm Code	-	R
0x4011	Execution Point Number	-	R
0x4012	Actual Position (User Coordinate Hi) (Note3)		R
0x4013	Actual Position (User Coordinate Lo)	(Note1)	R
0x4014	Command Position (User Coordinate Hi) (Note3)		
0x4015	Command Position (User Coordinate Lo)	(Note1)	R
0x4016	Position Deviation (User Coordinate Hi) (Note3)	-	R
0x4017	Position Deviation (User Coordinate Lo)	(Note1)	R

Note1: Refer to page 7-21 for the details of monitor. Servo amplifier state is read out, however, only low-order byte is effective, high-order byte has no meaning.
Note2: Refer to page 7-21 for the details of monitor. The warning state read out becomes as follows: Low-order byte is warning state 1 , high-order byte is warning state 2 .
Note3: Actual monitor value is indicated in user coordinate, decimal point is not added.

- Register Address List - Monitor 2

Register Address (Hex)	Name	Unit	R/W
0×4080	Coil Input Group1 Monitor	(Note4)	-
0×4081	Coil Input Group2 Monitor	(Note4)	-
0×4082	Coil Output Group1 Monitor	-	R
0×4083	Coil Output Group2 Monitor	-	R

Register Address $=0 \times 4080$ (Read)

Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8
M_FIN	IRUN	-1step	+1step	OVRD_3	OVRD_2	OVRD_1	OVRD_0
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
CACL	ARST	RAP	-JOG	+JOG	ZRT	RUN	S-ON

Register Address $=0 \times 4081$ (Read)

Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8
IN							
(128)	(64)	(32)	(16)	(8)	(4)	(2)	(1)
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
E_STR	-OT	+OT	SDN	HOME	BRK	EXT_E	BAT
				FRE	ELR		

Register Address $=0 \times 4082$ (Read)

Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8
C_RDY	$\begin{aligned} & \text { T_LIM } \\ & \text { _FLG } \end{aligned}$	$\begin{gathered} \mathrm{IN} \\ \mathrm{FEED} \end{gathered}$	$\begin{aligned} & \text { IN } \\ & \text { STOP } \end{aligned}$	SVACT	SVRDY	A_RDY	ALM
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
WAR (ZFIN)	INPS	PFIN	MOVE	EXT	ERR	HBON	NCRDY

Register Address $=0 \times 4083$ (Read)

Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8
ZOUT_8	ZOUT_7	ZOUT_6	ZOUT_5	ZOUT_4	ZOUT_3	ZOUT_2	ZOUT_1
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
MSTR	-	-	-	MOUT_3	MOUT_2	MOUT_1	MOUT_0

Note4: This monitor is an echo back monitor of "coil input group 1 and 2 (register address: 0x0080, $0 x 0081$)," the values written into register address: $0 \times 0080,0 \times 0081$ can be read out as they are. Readout register address: 0x4090 to confirm hardware I/O-input information.

- Register Address List - Monitor 3

Register Address (Hex)	Name	Unit	R / W
0x4084	Alarm History (Now)	-	R
0x4085	Alarm History (Last 1)	-	R
0x4086	Alarm History (Last 2)	-	R
0x4087	Alarm History (Last 3)	-	R
0x4088	Alarm History (Last 4)	-	R
0x4089	Alarm History (Last 5)	-	R
0x408A	Alarm History (Last 6)	-	R
0x408B	Alarm History (Last 7)	-	R

- Register Address List - Monitor 4

Register Address List	Name	Unit	R / W
0x408C	Coil Input Group3 Monitor	-	R
0x408D	(Reserved)	-	R
0x408E	Coil Output Group3 Monitor	-	R
0x408F	(Reserved)	-	R
0x4090	General purpose input monitor	-	R

Register Address $=0 \times 408 \mathrm{C}$ (Read)

Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8
-	-	-	-	-	-	-	-
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
-	-	-	-	-	-	-	CSET

Register Address = 0x408D (Read)

Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8
-	-	-	-	-	-	-	-
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
-	-	-	-	-	-	-	-

Register Address $=0 \times 408 \mathrm{E}$ (Read)

Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8
-	-	-	-	-	-	-	-
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
-	-	-	-	-	-	-	-

Register Address $=0 \times 408 F$ (Read)

Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8
-	-	-	-	-	-	-	-
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
-	-	-	-	-	-	-	-

Register Address $=0 \times 4090$ (Read)

Bit15	Bit14	Bit13	Bit12	Bit11	Bit10	Bit9	Bit8
-	-	-	-	-	-	-	-
Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
-	-	-	-	INPUT_3	INPUT_2	INPUT_1	INPUT_0

- Alarm Code

When an alarm is issued, verify its contents using the Alarm List (Table 1 to 3).
For remedies at the time of defective operation, please refer to chapter 8 in the attached sheet.
Detection Operations: After alarm, "DB" will slow down and stop the servo motor.
Detection Operations: "SB" shows down and stops the servo motor as per the sequence current limitation value.

After selecting the dynamic brake in forced stop operation selection, the servo motor will slow down and stop by dynamic brake operations irrespective of operations during detecting.
(However, while detecting alarm 0x0053 [DB resistor super heating]), the servo motor will stops via servo brake operation.)
Detection Operations: "-" is an alarm detected only in the initial process after turning ON the control power.
Alarm clear: "V" means it is possible to reset, " " means it is not possible to reset.

- Alarm Code List 1

Alarm Code (Hex)	Name	Description	Operation when detected	Alarm Clear
0x0001	Serial communication error 1	- Time-out error of a host device communication	DB	V
0x0021	Power Element Error (Overcurrent)	- Over current of drive module - Abnormality in drive power source - Overheating of drive module	DB	V
0x0022	Current Detection Error 0	- Abnormality of electric current detection value	DB	V
0x0023	Current Detection Error 1	- Abnormality of Electric current detection circuit	DB	V
0x0024	Current Detection Error 2	- Abnormality in communication with Electric current detection circuit	DB	V
0x0031	Forward over travel	- Entering normal over travel	DB	V
0x0032	Reverse over travel	- Entering reverse over travel	DB	V
0x0041	Overload 1	- Excessive effective torque	SB	V
0x0042	Overload 2	- Stall overload	DB	V
0x0043	Regenerative Error	- Regeneration load ratio exorbitance	DB	V
0x0051	Amplifier Overheat	- Overheating detection of amplifier ambient temperature	SB	V
0x0052	Inrush Preventive Register Overheat	- Detection of in-rush prevention resistance overheating	SB	V
0x0053	DB Resistor Overheat	- Overheating detection of DB resistor	SB	V
0x0054	Internal Overheat	- Overheating detection of Internal regeneration resistor	DB	V
0x0055	External Error	- Overheating detection of External regeneration resistor and abnormality detection of higher rank equipment	DB	V
0x0061	Overvoltage	- DC Excess voltage of main circuit	DB	V
0x0062	Main Circuit Undervoltage (Note1)	- DC Main circuit low voltage	DB	\checkmark
0x0063	Main Power Supply Open Phase (Note1)	- 1 phase of the 3 phase main circuit power supply disconnected	SB	V
0x0071	Control Power Supply Undervoltage (Note3)	- Control power supply low voltage	DB	$\begin{gathered} \mathrm{V} \\ \text { (Note2) } \\ \hline \end{gathered}$
0x0072	Under voltage of + 12 V	- Under voltage of + 12 V	SB	V

Note 1:Control power error or servo ready OFF is detected during instantaneous break of 1.5 to 2 cycles.
Note 2:When the main power voltage increases or decreases gradually or is an instantaneous interruption, main circuit low voltage or main power open phase may be detected.
Note 3:When the control panel voltage drops below +5 V due to suspension of control power, the alarm cannot be cleared without turning OFF the control power, even if having been restored with only a little drop from +5 V resulting in detection of control power supply error. Turn OFF the control power to reset the alarm.

- Alarm Code List 2

Alarm Code (Hex)	Name	Description	Operation when detected	Alarm Clear
0x0081	Encoder Pulse Error 1 (A-phase, B-phase, Z-phase)	- Incremental encoder (A, B, Z) signal line break - Power supply line break	DB	" "
0x0082	Absolute Encoder Signal Disconnect	- Absolute Encoder (PS) signal line break	DB	V
0x0083	External Encoder Pulse Error (CN-EXT: A-Phase, B-Phase)	- Breaking of full close Encoder (A, B) signal line	DB	V
0x0084	Communication Error Between Encoder and Amplifier	- Encoder serial signal time out	DB	V (Note5)
0x0085	Encoder Initial Process Error	- Failed to read CS data of incremental encoder - Abnormality in initial process of absolute encoder - Cable break	-	" "
0x0087	CS Disconnection	- CS signal line break	DB	" "
0x0091	Encoder Command Error	- Mismatch of transmission command and reception command	DB	V
0x0092	Encoder FORM Error	- Start, Stop bit Abnormality - Insufficient data length	DB	V
0×0093	Encoder SYNC Error	- Data cannot be received during the prescribed time after the command is sent.	DB	V
0x0094	Encoder CRC Error	- CRC generated from the received data and sent CRC do not match	DB	V
0x00A1	Encoder Error 1	- Breakdown of Encoder internal device	DB	(Note 6)
0x00A2	Absolute Encoder Battery Error	- Battery low voltage	DB	(Note 6)
0x00A3	Encoder Overheat	- Motor built-in Encoder Overheating	DB	(Note 6)
0x00A5	Encoder Error 3	- Error generation of multi-rotation data - Abnormality in operations of temperature encoder	DB	(Note 6)
0x00A6	Encoder Error 4	- Encoder internal EEPROM data is not set - Overflow of multi-rotation data	DB	(Note 6)
0x00A7	Encoder Error 5	- Resolver Output Abnormality - Light receiving element abnormality in encoder	DB	(Note 6)
0x00A8	Encoder Error 6	- Resolver disconnection - Light emitting element abnormality in encoder	DB	(Note 6)
0x00A9	Failure of Encoder	- Encoder failure	DB	(Note 6)
0x00B2	Encoder Error 2	- Position data incorrect	DB	(Note 6)
0x00B3	Absolute Encoder Multi-Turn Counter Error	- Detection of incorrect multiple rotations coefficient	DB	(Note 6)
0x00B4	Absolute Encoder Single-Turn Counter Error	- Detection of incorrect 1 rotation coefficient	DB	(Note 6)
0x00B5	Over-allowable Speed of Absolute Encoder at Turning ON	- Exceeds the permitted speed of motor rotation speed when the power is turned ON	DB	(Note 6)
0x00B6	Encoder Memory Error	- Access error of Encoder internal EEPROM	DB	(Note 6)
0x00B7	Acceleration Error	- Exceeds the permitted speed for motor rotation	DB	(Note 6)

Note 4 : When instantaneous interruption of a control source is long, it is regarded as power supply interception and then turning it on
again. The detected abnormalities of control source do not remain in an alarm history.
(The instantaneous interruption more than 1 second will be interpreted as power supply interception.)
Note 5 :When the absolute encoder with incremental output is used alarm resetting is prohibited. Note 6:Due to abnormality in encoder main body, encoder clear may sometimes be needed.

- Alarm Code List 3

Alarm Code (Hex)	Name	Description	Operation when detected	Alarm Clear
0x00C1	Overspeed	- Motor rotation speed is 120 \% more than the highest speed limit	DB	V
0x00C2	Speed Control Error	- Torque command and acceleration direction are not matching.	DB	V
0x00C3	Speed Feedback Error	- Motor power line disconnection (Note 8)	DB	V
0x00D1	Excessive Position Deviation	- Position Deviation Counter exceeds setup value	DB	V
0x00D2	Position Command Pulse Frequency Error 1	- Frequency of entered position command pulse is excessive	SB	V
0x00D3	Position Command Pulse Frequency Error 2	- Position command frequency after electronic gear is high.	SB	V
0x00DF	Test Run Close (Note 7)	- Detection in 'Test mode end' status	DB	V
0x00E1	EEPROM Error	- Abnormality of amplifier with built-in EEPROM	DB	" "
0x00E2	EEPROM Check Sum Error	- Error in check sum of EEPROM (entire area)	-	" "
0x00E3	Internal RAM Error	- Access error in CPU built in RAM	-	"
0x00E4	Process Error between CPU and ASIC	-Access abnormality in CPU ~ ASIC	-	" "
0x00E5	Parameter Error 1	-Detection when non-corresponding or undefined amplifier, motor, encoder code are specified.	-	" "
0x00E6	Parameter Error 2	- Error in combining code of motor, encoder, and/or amplifier that was set from system parameter.	-	" "
0x00E7	Parameter Error 3	- Error in address setting or baud rate setting of a host device communication	-	" "
0x00F1	Task Process Error	- Error in interruption process of CPU	DB	" "
0x00F2	Initial Time-Out	-Detection when initial process does not end within initial process time	-	" "
0x00FF	Sub-CPU error	- Failure in procedure of initialization in common RAM - Error in a processor used for a host device communication	-	" "

Note 7: Alarm that occurs in 'Test mode end' status is not recorded in the alarm history.
Note 8: When there is a rapid motor fall simultaneous with servo ON, there is a possibility that a break in the motor's power line cannot be detected.

Point Data

- Point Data Address Range (0x8001 to 0xBFFF)

Edit of point data accesses this domain of a register number.
Since there is 4-byte data in point data, take consistency of the higher rank of data, and a low rank.

$\begin{aligned} & \text { Bit } \\ & 15 \end{aligned}$	$\begin{aligned} & \text { Bit } \\ & 14 \end{aligned}$	$\begin{aligned} & \text { Bit } \\ & 13 \end{aligned}$	$\begin{aligned} & \text { Bit } \\ & 12 \end{aligned}$	Bit	$\begin{aligned} & \text { Bit } \\ & 10 \end{aligned}$	$\begin{gathered} \text { Bit } \\ 9 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 8 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 7 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 6 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 5 \end{gathered}$	$\begin{gathered} \text { Bit } \\ 4 \end{gathered}$	Bit 3	Bit 2	$\begin{gathered} \text { Bit } \\ 1 \end{gathered}$	Bit 0
1	0	Point Data Block Number Selection									Point Data Selection				

- Register Address List 1 - Point Data Block 0

- Register Address List 2 - Point Data Block 1 to Block 253

■ Move Mode

Bit allotment	Explanation of Bit
Bit15 to Bit14	01 : Fixed
Bit13 to Bit12	Move mode 2 01 : Continuous move 00 : Last mode
Bit11	0 : Fixed
Bit10	Move mode ABS / INC 1 : Position data is incremental (relative) command 0 : Position data is absolute command.
BIt9	Move mode with end/ no end 1: Travel on "Bump Stop" 0: Normal Movement (No Bumping)
Bit8	Move mode Variable speed: stop/ continuous 1: Continuous speed change operation 0 : Stop and change speed operation
Bit7 to Bit4	Servo Gain change 1111 to 0101 : default (Gain1) 0100 : Gain 4 0011 : Gain 3 0010 : Gain 2 0001 : Gain 1 0000 : default (Gain1)
Bit3 to Bit0	Loop Mode (Reserve) 1111 to 0000 : Reserve

* Refer to "Chapter 4, positioning function, explanation of point data," for details of point data and move modes.

■ M output Type

Bit allotment	\quad Explanation of Bit
Bit15 to Bit8	M output Code Sets the data for M output. M output is 4 bits from "00000000 to 00001111". Set this to "00000000" for usual.
	M output Type Sets the function of M output as follows: 11111111 to 00000011 : Reserve $00000010:$ Only M output, without handshaking. 00000001 : When the move is complete with handshaking mode, MSTR signal is output and wait until MFIN signal is input, the next move is performed.
	Bit7 to Bit0 00000000 : Without M output operations. No change from the previous M output.

- The write-in procedure of point data (EEPROM preservation procedure)

Point data No. 0 through No. 9 can be changed at any time.
Note: Difference between point data No. 0 through No. 9 and No. 10 through No. 253

- Point data No. 0 through No. 9 is written in internal RAM.
- Point data No. 10 through No. 253 is written in internal EEPROM.
* The number of times of writing in EEPROM is limited to about 100,000 times while that of tim es of writing extended-point data No. 0 through No. 9 is virtually unlimited, because the data is written in RAM. Thus point data No. 0 through No. 9 is rewritten frequently.
RAM data disappears if the servo unit limited power supply shuts down. To prevent this problem, a backup copy of RAM data must be created in a higher controller.
*How to overwrite default value of Point Data No. 0 through No. 9.
Write the values via [Setup software R-Setup] after power supply turned on with point data not written via host controller.
When point data 0 to 9 have been written at the state other than the above via [Setup software R-Setup], Alarm (ALM/EEPROM Checksum error) is activated.

A point data can be read or written on 32-byte block basis.
We recommend that a point data be read, changed, and rewritten if it needs to be changed. In principle, do not turn off the control power supply during writing operation.
Doing so causes mode abnormalities to output, thus preventing writing.
If communications are interrupted previously, no output may be generated, depending on the communication conditions.

3.Wiring

Communication example

- Communication example is described on condition of the following.

Baud rate $\cdots 115200$ bps
Slave address..1
Silent interval time(TO) \cdots about 334μ S
Servo amplifier processing time(T1) \cdots about $500 \mu \mathrm{~S}$
Communication wait time (T2) $\cdots 0 \mathrm{mS}$ The example of communication timing is
described by setting response time from
servo amplifier to about 0.9 ms (s). .
Outgoing message minimum transmitting time $\cdots 1 / 1152000 \times 11$ bit(Per byte)
The conditions by the side of a master are considered as continuation transmission. Please improve according to the equipment to be used.
Response massage minimum transmitting time $\cdots 125 \mu \mathrm{~S}$ (Per byte)

In setting up a communication cycle (scanning cycle), set up a satisfactory value accodeing to composition, a system configuration (the number of axes), etc. of equipment and a communication message to be used.
In changing baud rate, please refer to the example and re-calculate it.

- Use a communication diagnostic message and check communicative establishment.
Request message : 8byte (message length $=1 / 1152000 \times 11$ bit $\times 8$ byte $=$ about 0.76 mS)

Slave Adr	FC	Sub-FuncHi	Sub-FuncLo	Data Hi	Data Lo	CRC 16 Lo	CRC 16 Hi
0×01	0×08	0×00	0×00	0×12	0×34	$0 \times E D$	$0 \times 7 \mathrm{C}$

Response massage : 8byte (message length=0.125 $\times 8=$ about 1 mS)

Slave Adr	FC	Sub-FuncHi	Sub-FuncLo	Data Hi	Data Lo	CRC16 Lo	CRC16 Hi
0×01	0×08	0×00	0×00	0×12	0×34	$0 \times E D$	$0 \times 7 \mathrm{C}$

3.Wiring

- Servo gain is set.

The velocity loop proportional gain 1 is set as 100 Hz .
Request message : 8byte (message length $=1 / 1152000 \times 11$ bit $\times 8$ byte $=$ about 0.76 mS)

Slave Adr	FC	Reg Adr Hi	Reg Adr Lo	Reg Val Hi	Reg Val Lo	CRC16 Lo	CRC16 Hi
0×01	0×06	0×00	0×10	0×00	0×64	0×89	$0 \times E 4$

Response massage : 8byte (message length $=0.125 \times 8=$ about 1 mS)

Slave Adr	FC	Reg Adr Hi	Reg Adr Lo	Reg Val Hi	Reg Val Lo	CRC16 Lo	CRC16 Hi
0×01	0×06	0×00	0×10	0×00	0×64	0×89	$0 \times E 4$

In the write-in command (a single or multi) of a holding register, since a write-in value is saved at EEPROM, the reserve time of about $22 \mathrm{mS}(\mathrm{s})$ is spent inside amplifier.
Therefore, if the write-in command of a holding register is executed, please publish the next command after waiting for 25 mS or more.
It takes about 34 ms to reflect the parameter written to actual moving, so when moving work after setting parameter, make sure to issue command to operate after a lapse of 40 ms in consideration of margin.

3.Wiring

- Alarm history is read.

The eight-word continuation data of an alarm history zone is read out of monitor data.
Request message : 8byte (message length $=1 / 1152000 \times 11$ bit $\times 8$ byte $=$ about 0.76 mS)

Slave Adr	FC	Reg Adr Hi	Reg Adr Lo	Quantity Hi	Quantity Lo	CRC16 Lo	CRC16 Hi
0×01	0×03	0×40	0×84	0×00	0×08	0×11	$0 \times E 5$

Response massage : 21byte (message length=0.125 $\times 21=$ about 2.63 mS)

Slave Adr	FC	Byte Count
0×01	0×03	0×10

- Point data are set up. (Block 10 to 253)

Set the velocity data (32 bits) of block 10 as 0×12345678 out of point data.
Request message : 13byte (message length $=1 / 1152000 \times 11$ bit $\times 13$ byte $=$ about 1.24 mS)

Slave Adr	FC	Reg Adr Hi	Reg Adr Lo	Quantity Hi	Quantity Lo	Byte Count
0×01	0×10	0×81	0×40	0×00	0×02	0×04

Speed HH	Speed HL	Speed LH	Speed LL	CRC16 Lo	CRC16 Hi
0×12	0×34	0×56	0×78	$0 \times E 0$	$0 \times F D$

Response massage : 8byte (message length $=0.125 \times 8=$ about 1 mS)

Slave Adr	FC	Reg Adr Hi	Reg Adr Lo	Quantity Hi	Quantity Lo	CRC16 Lo	CRC16 Hi
0×01	0×10	0×81	0×40	0×00	0×02	0×68	0×20

- Point data are set up. (in the case of blocks 0 to 9)

The point data of blocks 0 to 9 are not saved at EEPROM.
Since it is renewal only of internal RAM, can change during turning on electricity at any time.

Point data differ with the block to set up and in the time which can receive the next command.
Since time to answer with the number of data to set up differs, please design according to the example of usage.

3.Wiring

- Point data are set up. (Block 10 to 253)

Set up all the data of block 10 out of point data.
Request message : 41byte (message length $=1 / 1152000 \times 11$ bit $\times 41$ byte $=$ about 3.91 mS)

Slave Adr	FC	Reg Adr Hi	Reg Adr Lo	Quantity Hi	Quantity Lo	Byte Count
0×01	0×10	0×81	0×40	0×00	0×10	0×20

Speed HH	Speed HL	Speed LH	Speed LL			CRC16 Lo	CRC16 Hi
Response massage : 8byte (message length $=0.125 \times 8=$ about 1 mS)							
Slave Adr	FC	Reg Adr Hi	Reg Adr Lo	Quantity Hi	Quantity Lo	CRC16 Lo	CRC16 Hi
0x01	0x10	0x81	0x40	0x00	0x10	0xE8	$0 \times 2 \mathrm{D}$

3.Wiring

- Coil inputs are set up. (All the 32bits are set up by multi-register setup.)

When only a servo-on input is turned on and all other bits are set to OFF.
Request message : 13byte (message length=1/1152000 $\times 11$ bit $\times 13$ byte $=$ about 1.24 mS)

Slave Adr	FC	Reg Adr Hi	Reg Adr Lo	Quantity Hi	Quantity Lo	Byte Count
0×01	0×10	0×00	0×80	0×00	0×02	0×04

CoillnG1 Hi	CoillnG1 Lo	CoillnG2 Hi	CoillnG2 Lo	CRC16 Lo	CRC16 Hi
0×00	0×01	0×00	0×00	$0 \times A A$	$0 \times 0 F$

Response massage : 8byte (message length=0.125 $\times 8=$ about 1 mS)

Slave Adr	FC	Reg Adr Hi	Reg Adr Lo	Quantity Hi	Quantity Lo	CRC16 Lo	CRC16 Hi
0×01	0×10	0×00	0×80	0×00	0×02	0×40	0×20

- Coil outputs are read. (All the 32bits are read by holding register read-out.)

Request message : 8byte (message length $=1 / 1152000 \times 11$ bit $\times 8$ byte $=$ about 0.76 mS)

Slave Adr	FC	Reg Adr Hi	Reg Adr Lo	Quantity Hi	Quantity Lo	CRC16 Lo	CRC16 Hi
0×01	0×03	0×40	0×82	0×00	0×02	0×71	$0 \times E 3$

Response massage : 9byte (message length $=0.125 \times 9=$ about 1.13 mS)

Slave Adr	FC	Byte Count
0×01	0×03	0×04

3. Wiring
 [MODBUS Communication: Alarm Clear Procedure]

- Alarm clear procedure (only 1 bit is set up by single coil setup.)
(1) Turn on an alarm clear input.

Request message : 8byte (message length $=1 / 1152000 \times 11$ bit $\times 8$ byte $=$ about 0.76 mS)

Slave Adr	FC	Coil Adr Hi	Coil Adr Lo	Out Val Hi	Out Val Lo	CRC16 Lo	CRC16 Hi
0×01	0×05	0×00	0×06	$0 \times F F$	0×00	$0 \times 6 \mathrm{C}$	$0 \times 3 \mathrm{~B}$

Response massage : 8byte (message length=0.125 $\times 8=$ about 1 mS)

Slave Adr	FC	Coil Adr Hi	Coil Adr Lo	Out Val Hi	Out Val Lo	CRC16 Lo	CRC16 Hi
0×01	0×05	0×00	0×06	$0 \times F F$	0×00	$0 \times 6 \mathrm{C}$	$0 \times 3 B$

(2) Wait for 20 mS or more.
(3) Turn off an alarm clear input.

Request message : 8byte (message length=1/1152000 $\times 11$ bit $\times 8$ byte $=$ about 0.76 mS)

Slave Adr	FC	Coil Adr Hi	Coil Adr Lo	Out Val Hi	Out Val Lo	CRC16 Lo	CRC16 Hi
0×01	0×05	0×00	0×06	0×00	0×00	$0 \times 2 D$	$0 \times C B$

Response massage : 8byte (message length $=0.125 \times 8=$ about 1 mS)

Slave Adr	FC	Coil Adr Hi	Coil Adr Lo	Out Val Hi	Out Val Lo	CRC16 Lo	CRC16 Hi
0×01	0×05	0×00	0×06	0×00	0×00	$0 \times 2 \mathrm{D}$	$0 \times C B$

Slave1
(Alarm signal)
gle or multi-register setup, you may operate it together with other bis.
In order to clear an alarm condition inside amplifier, please continue ON for 20 mS or more.
If an alarm clear input is turned off, an alarm condition will be canceled and it will return to a normal state. However, reset may be impossible unless it resets power supply or (control power source is once intercepted and is switched on again) clears encoder depending on the kind of alarm.
Please refer to the attached sheet [Chapter 8 Maintenance] and [Alarm list].

3. Wiring

- Encoder clear procedure (only 1 bit is set up by single coil setup.)
(1) Turn on an encoder clear input.

Request message : 8byte (message length $=1 / 1152000 \times 11$ bit $\times 8$ byte $=$ about 0.76 mS)

Slave Adr	PC	Coil Adr Hi	Coil Adr Lo	Out Val Hi	Out Val Lo	CRC16 Lo	CRC16 Hi
0×01	0×05	0×00	0×10	$0 \times F F$	0×00	$0 \times 8 \mathrm{D}$	$0 \times F F$

Response massage : 8byte (message length =0.125 $\times 8=$ about 1 mS)

Slave Adr	FC	Coil Adr Hi	Coil Adr Lo	Out Val Hi	Out Val Lo	CRC16 Lo	CRC16 Hi
0×01	0×05	0×00	0×10	$0 \times F F$	0×00	$0 \times 8 \mathrm{D}$	$0 \times F F$

(2) Wait for 4 S or more.
(3) Turn off an encoder clear input.

Request message : 8byte (message length =1/1152000 $\times 11$ bit $\times 8$ byte $=$ about 0.76 mS)

Slave Adr	FD	Coil Adr Hi	Coil Adr Lo	Out Val Hi	Out Val Lo	CRC16 Lo	CRC16 Hi
0×01	0×05	0×00	0×10	0×00	0×00	$0 \times C C$	$0 \times 0 \mathrm{~F}$

Response massage : 8byte (message length $=0.125 \times 8=$ about 1 mS)

Slave Adr	FD	Coil Adr Hi	Coil Adr Lo	Out Val Hi	Out Val Lo	CRC16 Lo	CRC16 Hi
0×01	0×05	0×00	0×10	0×00	0×00	$0 \times C C$	$0 \times 0 \mathrm{~F}$

Slave 1 \qquad
(Alarm signal)
a
By the single or multi-register setup, you may operate it together with other bits.
In order to clear an encoder clear state inside amplifier, please continue ON for more than 4 ms .
The encoder clear differs from the "alarm reset method" after turning off an encoder clear input in the sensor and encoder to be used.
Please refer to page "Materials-64," Encoder clear reset method.

No Text on This Page.

[Positioning Function]

- Parameter GroupD List 4-1
Explanation of Parameter GroupD 4-5
Explanation of Point Data 4-16
- Performance by External Operation Input 4-31
- External data setup 4-39
- Read this instruction to use positioning functions for the first time 4-40
Description of infinite motor rotation specification 4-47
Explanation of JOG with specific position stop 4-50

4. Positioning Function

- Explanation of Parameter GroupD

- Parameter Group D List

Gap	Page	Symbol	Paramet er Level	Name and Description	Standard Setting Value	Unit	Setting Range
	Register address						
D	10 $0 \times 0 \mathrm{C} 16$	Z_hsp	Basic	Home-position return high speed -High speed setup upon Home-position return (when using incremental encoder) Velocity setup upon Home-position return (when using the absolute sensor)	16.70	※4	1 to 2147483647
	11	Z_Isp	Basic	Home-position return low speed -Low speed setup upon Home-position return		$※ 4$	1 to 2147483647
	0x0C18				0.80		
	0x0C1A	Z_add	Basic	Home-position coordinate -This value will be Home-position of the user's coordinate when Home-position returns. (When using incremental encoder) This value will be Home-position of the user's coordinate when 'home-position set' is executed.	0.00	$※ 5$	$\begin{aligned} & -214748368 \text { to } \\ & 2147483647 \end{aligned}$
	0x0C1C	Z_ofs	Basic	Home-position offset value -In Home-position return, this value is used as an offset between the vase signal (C-phase or SDN signal) position and the user base position.	0.00	※5	$\begin{aligned} & -214748368 \text { to } \\ & 2147483647 \end{aligned}$
	0x0C1F	Z_inp	Basic	Home-position in-position width ※1 -Reducing this value improves the home-position return precision.	100	Pulse	1 to 65535
	15	$\begin{aligned} & \text { +STROK } \\ & \text { E } \end{aligned}$	Basic	+STROKE (Used for infinite coordinate only) Set maximum value of coordinate towards plus axis	0.00	$※ 5$	$\begin{aligned} & -214748368 \text { to } \\ & 2147483647 \end{aligned}$
	16	A_ofs	Basic	Effective stroke length of absolute encoder (Normal coordinate) ※2 - Sets the valid stroke length from the home-position in the absolute encoder. --STROKE (Used for infinite revolving coordinate only) Set minimum value of coordinate towards minus axis	-100.00	$※ 5$	$\begin{aligned} & -214748368 \text { to } \\ & 2147483647 \end{aligned}$
	17	Zon1L	Basic	Zone (1) Negative direction side - Sets the valid negative direstion coordinates for the zone signal.	0.00	$※ 5$	$\begin{aligned} & -214748368 \text { to } \\ & 2147483647 \end{aligned}$
	18	Zon1H	Basic	Zone (1)Positive direction side - Sets the valid positive direstion coordinates for the zone signal.	0.00	※5	$\begin{aligned} & -214748368 \text { to } \\ & 2147483647 \end{aligned}$
	19 $0 \times 0 \mathrm{C} 28$	Zon2L	Basic	Zone (2) Negative direction side - Sets the valid negative direstion coordinates for the zone signal.	0.00	$※ 5$	$\begin{aligned} & -214748368 \text { to } \\ & 2147483647 \end{aligned}$
	1A	Zon2H	Basic	Zone (2) Positive direction side - Sets the valid positive direstion coordinates for the zone signal.	0.00	$※ 5$	$\begin{aligned} & -214748368 \text { to } \\ & 2147483647 \end{aligned}$
	1B	Zon3L	Basic	Zone (3) Negative direction side -Sets the valid negative direstion coordinates for the zone signal.	0.00	$※ 5$	$\begin{aligned} & -214748368 \text { to } \\ & 2147483647 \end{aligned}$
	1C	Zon3H	Basic	Zone (3) Positive direction side - Sets the valid positive direstion coordinates for the zone signal.	0.00	※5	$\begin{array}{\|l} -214748368 \text { to } \\ 2147483647 \end{array}$
	1D	Zon4L	Basic	Zone (4) Negative direction side - Sets the valid negative direstion coordinates for the zone signal.	0.00	※5	$\begin{aligned} & -214748368 \text { to } \\ & 2147483647 \end{aligned}$
	1E	Zon4H	Basic	Zone (4) Positive direction side - Sets the valid positive direstion coordinates for the zone signal.	0.00	$※ 5$	$\begin{aligned} & -214748368 \text { to } \\ & 2147483647 \end{aligned}$
	1F	Zon5L	Basic	Zone (5) Negative direction side - Sets the valid negative direstion coordinates for the zone signal.	0.00	$※ 5$	$\begin{aligned} & -214748368 \text { to } \\ & 2147483647 \end{aligned}$
	20	Zon5H	Basic	Zone (5) Positive direction side - Sets the valid positive direstion coordinates for the zone signal.	0.00	$※ 5$	$\begin{array}{\|l\|} \hline-214748368 \text { to } \\ 2147483647 \end{array}$
	21	Zon6L	Basic	Zone (6) Negative direction side -Sets the valid negative direstion coordinates for the zone signal.	0.00	$※ 5$	$\begin{aligned} & -214748368 \text { to } \\ & 2147483647 \end{aligned}$

Goup	Page	Symbol	Parameter Level	Name and Description	Standard Setting Value	Unit	Setting Range
	Register address						
D	22	Zon6H	Basic	Zone (6)Positive direction side - Sets the valid positive direstion coordinates for the zone signal.	0.00	※5	$\begin{aligned} & \hline-214748368 \text { to } \\ & 2147483647 \end{aligned}$
	0x0C3A						
	23	Zon7L	Basic	Zone (7) Negative direction side - Sets the valid negative direstion coordinates for the zone signal.	0.00	※5	$\begin{aligned} & \hline-214748368 \text { to } \\ & 2147483647 \end{aligned}$
	0x0C3C						
	24	Zon7H	Basic	Zone (7) Positive direction side - Sets the valid positive direstion coordinates for the zone signal.	0.00	※5	$\begin{aligned} & \hline-214748368 \text { to } \\ & 2147483647 \end{aligned}$
	0x0C3E						
	25	Zon8L	Basic	Zone (8) Negative direction side - Sets the valid negative direstion coordinates for the zone signal.	0.00	$※ 5$	$\begin{aligned} & \hline-214748368 \text { to } \\ & 2147483647 \end{aligned}$
	0x0C40						
	26	Zon8H	Basic	Zone (8) Positive direction side - Sets the valid positive direstion coordinates for the zone signal.	0.00	※5	$\begin{aligned} & \hline-214748368 \text { to } \\ & 2147483647 \end{aligned}$
	0x0C42						
	27	H_jog	Basic	Manual high speed -High speed setting of in manual feed and 1step feed. High speed or low speed can be switched by entering RAP.	16.70	※4	1 to 2147483647
	0x0C44						
	28	L_jog	Basic	Manual low speed -Low speed setting of in manual feed and 1step feed. High speed or low speed can be switched by entering RAP.	0.80	※4	1 to 2147483647
	0x0C46						
	29	H_stp	Basic	High speed 1step travel distance - Sets the travel distance in case of $+/$-1step input. High speed travel distance / low speed travel distance can be switched by entering RAP.	10.00	※5	1 to 2147483647
	0x0C48						
	2A	L_stp	Basic	Low speed 1step travel distance -Sets the travel distance in case of $+/-1$ step input. High speed travel distance / low speed travel distance can be switched by entering RAP.	1.00	$※ 5$	1 to 2147483647
	0x0C4A						
	2B	Ovride 0	Basic	Oveerride 0 -This setting ratio is multiplied by travel velocity through this override input	100	\%	1to 255
	$\begin{gathered} \hline \text { 0x0C4C } \\ \text { Bit7_0 } \\ \hline \end{gathered}$						
	2C	Ovride1	Basic	Oveerride 1 -This setting ratio is multiplied by travel velocity through this override input	150	\%	1to 255
	$0 \times 0 \mathrm{C} 4 \mathrm{C}$ Bit15 8						
	2D	Ovride 2	Basic	Oveerride 2 -This setting ratio is multiplied by travel velocity through this override input	100	\%	1to 255
	$\begin{gathered} \hline \text { 0x0C4D } \\ \text { Bit7_0 } \\ \hline \end{gathered}$						
	2E	Ovride 3	Basic	Oveerride 3 -This setting ratio is multiplied by travel velocity through this override input	100	\%	1to 255
	$0 \times 0 C 4 D$ Bit15_8						
	2F	Ovride 4	Basic	Oveerride 4 -This setting ratio is multiplied by travel velocity through this override input	100	\%	1to 255
	$\begin{gathered} \hline \text { 0x0C4E } \\ \text { Bit7_0 } \\ \hline \end{gathered}$						
	30	Ovride 5	Basic	Oveerride 5 -This setting ratio is multiplied by travel velocity through this override input	100	\%	1to 255
	0x0C4E Bit15 8						
	31	Ovride 6	Basic	Oveerride 6 -This setting ratio is multiplied by travel velocity through this override input	100	\%	1to 255
	$\begin{gathered} \hline \text { 0x0C4F } \\ \text { Bit7 } 0 \end{gathered}$						
	32	Ovride 7	Basic	Oveerride 7 -This setting ratio is multiplied by travel velocity through this override input	100	\%	1to 255
	$0 \times 0 C 4 F$ Bit15 8						
	33	Ovride 8	Basic	Oveerride 8 -This setting ratio is multiplied by travel velocity through this override input	100	\%	1to 255
	$\begin{gathered} \text { 0x0C50 } \\ \text { Bit7_0 } \end{gathered}$						
	34	Ovride 9	Basic	Oveerride 9 -This setting ratio is multiplied by travel velocity through this override input	100	\%	1to 255
	$0 \times 0 \mathrm{C} 50$ Bit15_8						
	35	Ovride 10	Basic	Oveerride 10 -This setting ratio is multiplied by travel velocity through this override input	100	\%	1to 255
	$\begin{gathered} \hline 0 \times 0 \mathrm{C} 51 \\ \text { Bit7 } 0 \end{gathered}$						
	36	Ovride 11	Basic	Oveerride 11 -This setting ratio is multiplied by travel velocity through this override input	100	\%	1to 255
	$\begin{aligned} & \hline 0 \times 0 \mathrm{C} 51 \\ & \mathrm{Bit} 15 _8 \end{aligned}$						
	37	Ovride12	Basic	Oveerride 12 -This setting ratio is multiplied by travel velocity through this override input	100	\%	1to 255
	$\begin{gathered} \hline \text { 0x0C52 } \\ \text { Bit7_0 } \end{gathered}$						

Gap	Page	Symbol	Parameter Level	Name and Description	Standard Setting Value	Unit	Setting Range
	Register address						
A	38	Ovide13	Basic	Oveerride 13 -This setting ratio is multiplied by travel velocity through this overide input	100	\%	1 to 255
	$\begin{aligned} & \hline 0 \times 0 \mathrm{C} 52 \\ & \text { Bit15_8 } \end{aligned}$						
	39	Ovride14	Basic	Oveerride 14 -This setting ratio is multiplied by travel velocity through this override input	100	\%	1 to 255
	$\begin{gathered} \hline 0 \times 0 C 53 \\ \text { Bit7_0 } \end{gathered}$						
	3A	Ovide15	Basic	Oveerride 15 -This setting ratio is multiplied by travel velocity through this override input	100	\%	1 to 255
	$\begin{aligned} & 0 \times 0 C 53 \\ & \text { Bit15_8 } \end{aligned}$						
	3B	S_pls	Basic	Number of system divisions $\quad{ }^{* 1}$. ${ }^{-1}$ Number of divisions for 1 motor rotation.	8000	(Pulse)	1 to 131072
	0x0C54						
	3C	U_pls	Basic	Number of user divisions *1 -Travel distance per one motor rotation from the user point of view.	10.00	(mm)	1 to 131072
	0x0C56						
	3 E	D_dpo	Basic	Velocity, Position data decimal point *1 - Setup of decimal point position for indication " 0 "....No decimal point " 1 "...One place of decimals " 2 "...Two places of decimals " 3 "...Three places of decimals " 4 "...Four places of decimals " 5 "...Five places of decimals	2	-	0 to 5
	$\begin{aligned} & \hline 0 \times 0 \mathrm{C} 58 \\ & \text { Bit15_8 } \end{aligned}$						
	3F	Unit	Basic	Setting unit ${ }^{*} 1$-Setting of the unit"00"......pulse, "01"...... mm	01:_mm	-	00,01
	$\begin{gathered} \hline \text { 0x0C59 } \\ \text { Bit7_0 } \end{gathered}$						
	40	Sw1	Basic	Function switch1	0000H	-	0000 to FFFF
	0x0C5A						
	41	Sw2	Basic	Function switch2	0000H	-	0000 to FFFF
	0x0C5B						
	42	Sw3	Basic	Function switch3	0000H	-	0000 to FFFF
	0x0C5C						
	43	Sw4	Basic	Function switch4	0000H	-	0000 to FFFF
	0x0C5D						
	50	hCOMBAUD	Basic	Host equipment communication baud rate	$\begin{aligned} & \text { 05:- } \\ & \text { 115200bps } \end{aligned}$	-	-
	-						
	51	HCOMFMT	Basic	Host equipment communication format	00: Even_1 Stop	-	-
	-						
	52	HCOM ADROFS	Basic	Slave address offset in host equipment communication	00:+0	-	-
	-						
	53	HCOMSW MODE	Basic	Host equipment communication rotary switch 1 mode	$\begin{gathered} \text { 00:_Baud } \\ \text { rate } \\ \hline \end{gathered}$	-	-
	-						
	54	HCOMWAIT	Basic	Latency time to host equipment communication	0	x125uS	0-8000
	-						
	55	HCOMTIM OUT	Basic	Host equipment communication timeout	0	mS	0-10000
	-						
	56	HCOMSPEC	Basic	Host equipment communication specifications	$\begin{gathered} \text { 00:_MOD } \\ \text { BUS } \end{gathered}$	-	-
	-						
	57	HCOMFUNC	Basic	Host equipment communication functions	$\begin{gathered} \hline 00: \text { Stand } \\ \text { ard } \\ \hline \end{gathered}$	-	-
	-						

* If the set values are changed, Please be sure to perform zero set. Otherwise it will cause displacement.

3,4,5:Units are not specified in this instruction manual because user are supposed to setup the parameters (S_pls,U_pls,D_dpo,Unit).
Velocity system is displayed as " U_{v} " and position system " U " in the explanation from here on.
Refer to page 4-40 Parameters set for the first time use.

4. Positioning Function

- Detail Explanation of Parameters Group D

Each parameter contained in the parameter group D is explained.
In addition, the explanation which has given *1, *2, etc. to the head of the sentence; since there are notes, refer to page 4-10.

1) 00 S_vmx:System velocity limit (Uu)

The operational velocity data is limited within this value even if it is set larger by external manipulation.
2) 01 T_vmx:Velocity limit of PC operation(Uu)

The velocity is limited by this value like S_vmx when you manipulate through PC.
However, it is limited with the set value of S_vmx in the case of S_vmx < T_vmx.
3) 02 S_+OT:Positive direction software limit(U)
-Software limit is always enabled in the case of an absolute sensor and enabled after zero return in the case of an incremental encoder.
-If the current position exceeds this set value, it decelerates and stops and forward transit is forbidden.
(Software limit error will be output.)
-Break-out should be conducted by manual (JOG) to the opposite direction (negative direction).
Error will be released by inputting alarmreset signal where it comes in the limit (operational range).
-SOTde: If you select"0 " = (page 09), it won't work.
4) 03 S_OT:Negative direction software limit(U)
-When the current position falls below this set value, backward transition is forbidden.
-Break-out should be conducted by manual (JOG) to the opposite direction (positive direction).
Error will be released by inputting alarmreset signal where it comes in the limit (operational range).
-SOTde: If you select"0 " = (page 09), it won't work.
5) 04 Stp_P:Striking depth

This is a virtual entry depth at striking operation. It is a pulse that complete positioning even without reaching the goal position if the striking depth falls in with the difference between command position and present one at the striking operation during positioning feeding.

6) 05 S_inp:System in-position width(Pulse)
-Positioning is completed and in-position is output when the difference between command position and present position (deviation amount) is withinS_inp value(\pm).
-This value should usually be set with positioning error permissible value.
7) 06 S_ovf : System overflow (U)
-Values considered as overmuch position deviation (alarm) and defective position loop (defective trailing) including operation are setup.
-Set values are determined in adjusted value and maximum velocity of position loop gain(Kp) and feed forward gain (KFF).
S_ovf > VmaxX (100-Kff) / ($100 \times$ Kp $)$
8) 07 T_ovf :Overflow at current limit (U)
-During current limit, position deviation is apt to be bigger than usual operation and overmuch deviation alarm becomes sensitive.
-This is a parameter to avoid this state.

- Therefore usually it is T_ovf > S_ovf.

9) 08 Bakls: Backlash (U)
-Amount of backlash of a machine is set.
-Amount of backlash is carried out being added to travel data every time travel direction changes.

- Perform zero return operation when you use backlash correction or after you alter setting.
-Correction starts when the direction reverses to the direction of zero return operational completion.

10) 09 SOTde: Software limit detection (-)
-Validity / invalidity of software limit is setup.
" 0 "... Software limit is invalid.
" 1 "...Software limit is valid.
11) OB Accel: Acceleration / deceleration constant (-)

This is used in all the transitions of manual, 1step, home-position return, point transition.

$$
\text { Accel }=\frac{V_{1} \times 1 O^{\left(D _d p o\right)}}{t_{1} \times 1 O^{3}} \text { However } V_{1}=(\mathrm{mm} / \mathrm{s})
$$

When rising at 0.2 sec until the velocity of $0 \rightarrow 375(\mathrm{~mm} / \mathrm{sec})$

$$
\begin{aligned}
& V_{1}=375(\mathrm{~mm} / \mathrm{sec}) \ldots\left(\mathrm{N}=4500 \mathrm{~min}^{-1}\right) \\
& \mathrm{t}_{1}=0.2(\mathrm{sec}), \mathrm{D}_{2} \mathrm{dpo}=2, ~ U _\mathrm{pls}=5.00(\mathrm{~mm}) \\
& \text { Accel }=\frac{375 \times 1 \mathrm{O}^{2}}{0.2 \times 1 \mathrm{O}^{3}}=187.5 \rightarrow 188
\end{aligned}
$$

Note) When acceleration constant is too high, overshood or undershoot (vibration) is prone to happen.

4. Positioning Function

12) OC S_rat : S-acceleration/deceleration time (msec)

- The curb section (Δt) of s-shape in the acceleration and decelaration is set with time.
- Linear acceleration/deceleration when set value is below 4 (msec)
(Set "0" during the straight line.)
- If acceleration time is short enough and the curb section of s-shape is too long, it can not reach acceleration constant (Accel).

-Rising (downward) time at S-shape is about Δt longer (curb section of S-shape) than at straight line.
- The straight line at S-shape is acceleration constant (Accel).

13) OD T-jog:Jog current limit of PC operation

This is current limit set value when limiting current at Jog running of PC operation
(Test Run function on setup software).
<Explanation of PC operation/Jog operation>
Jog operation by PC is carried out at "test operation" or "Jog operation execution".
Follow the directions below when you specially want to teach striking stop.
(1) Strike after Jog-moving at [current limit]+[low speed+] or [low speed-].
(2) Move the ideal value after striking making only pulses set by parameter"Step_P" as soaking pulses.
(3) When ideal value moves "Step_P", deviation will be cleared and ideal value is completed at position B.

(4) f you register teaching, position A is automatically registered and you can teach striking stop.
(In advance, set other data for striking stop.)

4. Positioning Function

14) OE Z_typ:Home-position return type(-)
*2 When incremental encoder or incremental use absolute encoder are used, home-position return operation should be done at first for matiching internal command coordinate and actual machine coordinate.
Home-position return method can choose from type below at parameter Z_typ.
a) Home-position return type 0 (Set value:0)
(1) ON of a zero return signal (ZRT) will start movement in the direction (Z_dir) of the starting point at the velocity set up at the zero return high speed (Z_hsp).
(2) Once carries out a slowdown stop in OFF of a home position slowdown signal (SDN), and the direction of operation is reversed.
After reversal, moves at the velocity set up at the zero return low speed (Z _ 1 sp).
(3) After home position slowdown signal (SDN) is again set to ON , an encoder C phase signal stops for the first time in the position which added the starting point offset value (Z _ofs) to the position set to ON, and the position serves as the starting point. The coordinates of a starting point position serve as a value set as the starting point position coordinate (Z_add).

b) Home-position return type 1(Set value: 1)
(1) and (2) are the same as that of the zero return type 0.
(3) Zero return slowdown signal (SDN) stops in the position which added the starting point offset value (Z _ofs) to the position again set to ON , and the position serves as the starting point.
The coordinates of a starting point position serve as a value set as the starting point position coordinate (Z_add).

Note:1 Homing signal is accepted only when other operational signals (RUN, Jog, 1 STEP) are all OFF. 2 In actual movement, since the position of the actually stopped position (A) differs from the position decided by C phase signal (Type 1; signal before home position), it performs movement of the amount of compensation +Z_ofs.
Movement of the amount of compensation is performed also Z_{-}ofs $=0$.

4. Positioning Function

15) OF Z_dir: Home-position return direction (-)
*2 Seting "0"...Forward rotation at high speed Backward rotation at low speed
-Setting "1"...Backward rotation at high speed Forward rotation at low speed
16) 10 Z_hsp: Home-position return high speed (Uu)
-With incremental encoder
Velocity at which it moves to the direction set by (Z_dir) without SDN input signal from homing start. -With absolute encoder

Velocity of home positioning
17) 11 Z_Isp: Home-position return low speed (Uu)
*2 \quad At homing operation, it slows down from (Z_hsp) by slow-down signal and later reverses and get away from the slow-down signal. Reverse velocity at that time.
18) 12 Z_add: Home-position coordinate (U)
*3 \quad With incremental sensor
The coordinate set here becomes user coordinate value when home-position return is completed.
-With absolute sensor
The value set here becomes user coordinate value at home-position set.
< Important>
-Home-position return or Home-position set is necessary when this value is changed.
19) 13 Z_ofs: Home-position offset value (U)
-When home-position return, it moves at this value as home reference signal (C-phase or SDN signal) position and correction amount of user reference position. (When using incremental encoder)
20) 16 A_ofs: Effective stroke length of absolute encoder (U)
*1 -Unnecessary with incremental encoder

- Setup effective stroke length at absolute encoder as absolute value. Set this value adding margin $(\pm \alpha)$ to mechanical effective stroke. (If it exceeds this effective stroke length, normal positioning is impossible because it exceeds the region of absolute encoder.)
-When the effective stroke of encoder is larger than a mechanism's stroke enough (more than twice), it can be used with A_ofs=0.
(It is preset automatically in the center position of encoder stroke at the time of $A _o f s=0$.)
- Important

Please be sure to set home if you change this value.
If you resore control power without home-position set, it causes displacement of position.

Notes
*1 Those are parameters needed only when encoder is absolute one.
*2 Those are parameters needed when incrermental encoder or incremental use absolute encoder are used. Check the position of zero when zero returns if you change this system parameters.
*3 Those are parameters needed by both absolute and incremental encoder.
*4 15 +STROKE, 16 A_ofs(-STROKE) are described in "Explanation of infinite revolving specification"

4. Positioning Function

21) 17 Zon1L : Zone signal (1)Negative direction side(U)
22) 18 Zon1H : Zone signal (1)Positive direction side (U)
-Set the zone that outputs zone signal (1)with Zon1L and Zon1H. Note)Zon1L<Zon1H

- It is necessary to select zone signal output for general-purpose output.
(Reference: Output selectionsignal)
Zone signal output is ON when current

\cdot It is not output if the time when it is within the zone is too short. ($\mathrm{t} \geqq 40 \mathrm{msec}$)
-Zone signal is enabled after zero return completion with incremental encoder and always enabled with absolute encoder.

23) 19 Zon2L : Zone signal (2)Negative direction side(U)
24) 1A Zon2H : Zone signal (2)Positive direction side (U)
25) 1B Zon3L : Zone signal (3)Negative direction side(U)
26) 1C Zon3H : Zone signal (3)Positive direction side (U)
27) 1D Zon4L : Zone signal (4)Negative direction side(U)
28) 1E Zon4H: Zone signal (4)Positive direction side (U)
29) 1F Zon5L : Zone signal (5)Negative direction side(U)
30) 20 Zon5H : Zone signal (5)Positive direction side (U)
31) 21 Zon6L : Zone signal (6)Negative direction side(U)
32) 22 Zon6H : Zone signal (6)Positive direction side (U)
33) 23 Zon7L : Zone signal (7)Negative direction side(U)
34) 24 Zon7H : Zone signal (7)Positive direction side (U)
35) 25 Zon8L : Zone signal (8)Negative direction side(U)
36) 26 Zon8H : Zone signal (8)Positive direction side (U)
37) 27 H _jog : Manual high speed (Uu)
-Velocity when it moves at high speed when rapid signal (RAP) is input during manual (JOG) operation or 1 step feeding operation
38) 28 L_jog : Manual low speed (Uu)
-Velocity when rapid signal (RAP) is not input during manual (JOG) operation or 1 step feeding operation
39) 29 H_stp : High speed 1step travel distance (U)
$\cdot 1$ step travel distance when it travels at high speed when rapid signal is input
40) 2AL_stp : Low speed 1 step travel distance (U)
-1 step travel distance when rapid signal (RAP) is not input
41) 2B Ovride0 : Override 0 (\%)

- It operates at the velocity multiplied by this rate with the set value as 100% to velocity set value of point data.
Example) If Ovride $0=10 \%$ to the velocity set $10 \mathrm{~mm} / \mathrm{sec}$, execution speed will be $1 \mathrm{~mm} / \mathrm{sec}$.
-The time when override O is enabled is when " Home-position return, point movement" when OVRID input is OFF.

Note) It is disabled for manual (JOG) operation.
-The time override 1 is enabled when "Home-position return, point movement" when OVRID input is ON .

- Setting of an override No. zero to 15 is selected by 4-bit input OVERID - zero to three - in bainary conversion.

See the table below for detail.

	OVRID_3	OVRD_2	OVRD_1	OVRD_0
OVRID NO.	a $=8$	$=4$	$=2$	$=1$
1	OFF	OFF	OFF	ON
2	OFF	OFF	ON	OFF
3	\vdots	\vdots	\vdots	\vdots
4				\vdots
$!$				
10				
1	ON	ON	ON	ON
15				

42) 2C Ovride1 : Override 1(\%)
43) 2D Ovride2 : Override 2(\%)
44) 2E Ovride3:Override3 (\%)
45) 2F Ovride4:Override4 (\%)
46) 30 Ovride5:Override5 (\%)
47) 31 Ovride6:Override6 (\%)
48) 32 Ovride7:Override7 (\%)
49) 33 Ovride8:Override8 (\%)
50) 34 Ovride9:Override9 (\%)
51) 35 Ovride10:Override10 (\%)
52) 36 Ovride11:Override11 (\%)
53) 37 Ovride12:Override12 (\%)
54) 38 Ovride13:Override13 (\%)
55) 39 Ovride14:Override14 (\%)
56) 3A Ovride15:Override15 (\%)
57) 4D Sw1:Function switch 1
-Set values are given in hexadecimal.

<Setting method> It will be in four-digit hexadecimal because bit numbers are displayed in hxidecimals per 4 bit unit.
(Each of 10 to 15 is displayed A, B, C, D, E, F)
Bit weight for $1^{\text {st }}$ digit bit $3=8$ bit $2=4$ bit $1=2$ bit $0=1$
Bit weight for $2^{\text {nd }}$ digit bit $7=8$ bit $6=4$ bit $5=2$ bit $4=1$
Bit weight for 3 rd digit bit $11=8$ bit $10=4$ bit $9=2$ bit $8=1$
Bit weight for $4^{\text {th }}$ digit bit $15=8$ bit $14=4$ bit $13=2$ bit $12=1$

-Coordinate at external data set teaching is current position coordinate $\cdots \cdots$ bit1=1
-External data setting shall be effective. (Permissible)..............bit0=1
Setting value shall be $0083[\mathrm{H}]$ in the above case.
58) 41 Sw2: Function switch 2
-It is used as function selection, logic reversal, and soft jumper.
-Setting values are given in hexadecimal. (Refer to parameters "Sw1")
High-order

Selection of timer to detect POFF when power supply is turned off 0 : Applies Power Failure detectiom delay time.
1: Applies POFF detection delay time

+0T
Hard overtravel
0 :external validity
1:internal forcing ON (function disabled)

Hard overtravel logic
0:Normally closed contact (external signal) 1:Normally opened contact (external signal)

Fixed 0

Homing function of absolute encoder
0 : None
1: Effective (Note)
*Make sure to set to " 1 " to use absolute encoder in incremental system.

External error detection
0 :external validity
1:internal forcing ON (function disabled)

Fixed 0

SDN signal switchover
0:Normally closed contact (external signal)
Note) Set all that don't have an explanation about bit to 0 .
1:Normally opened contact (external signal)
Setting example) \cdot SDN signal shall be normally opened contact-input. $\cdot \ldots \ldots \ldots \ldots \ldots \ldots$ bit7 $=1$
-External error shall not be detected.(Internal forcing shall be ON) $\cdots \cdots$ bit5 $=1$
-Hard overtravel shall be Normally opened contact input.bit2=1
Setting value is 00A4 [H] in the above case.
59) 42 Sw3:Function switch $3 \cdot 43$ Sw4:Function switch 4 It is reserve area. Set " 0000 ".

- Absolute encoder clear function

Normally, although absolute encoder clear is performed via setup software, absolute encoder clear can be also performed from CN1 input signal by the following method.

- The absolute encoder clear method -
- Sw2: Setup of bit4= "0" (with no absolute encoder homing)
- Sw1: Setup of bit6= "1" (Absolute encoder clear functional external I/O mode: Valid)
- ALM state

With the above-mentioned setup and a state, absolute encoder clear is performed by "turning on" of simultaneously CN1 incoming-signal SDN (19 pins) and ZRT (28 pins).
However, if an absolute encoder clear is performed, multi-turn part of coordinates will also be cleared and a coordinate system will be unfixed.
Be sure to perform home position setting after execution of this function.

- Explanation of Point Data

- Each role of point data and function are explained.

Point number	Speed	Position		Move mode											Output			IP	$\begin{aligned} & \ddot{0} \\ & \stackrel{0}{0} \\ & \stackrel{0}{8} \\ & \underline{\varepsilon} \\ & 0 \\ & 0 \\ & \ddot{q} \end{aligned}$		
				$\begin{aligned} & \text { ז } \\ & \frac{0}{0} \\ & \Sigma \end{aligned}$		$\begin{aligned} & \text { N } \\ & 0 \\ & 0 \\ & \Sigma \end{aligned}$		$\begin{aligned} & n \\ & \frac{0}{8} \\ & \sum \\ & \hline \end{aligned}$	$\begin{aligned} & \underset{\sim}{u} \\ & \underset{\omega}{\infty} \\ & \underset{\sim}{\sim} \end{aligned}$						$\stackrel{\otimes}{\underset{\sim}{2}}$	Delay	$\frac{0}{8}$				
	*	*										*	ms	\%		*				ms	
0	100.0	0.0	0	0	1	0	0	0	0	0	0	250	10	350	0	0.0	0	0	0	0	0000
1	214748364.7	-214748364.7	0	0	0	0	0	0	0	1	0	65535	32767	510	2	214748364.7	15	1	0	32767	0000
¢																					
253	10.0	50.0	0	0	1	0	0	0	1	0	0	200	0	150	0	0.0	0	253	0	100	0000

※1 R setup software is used for a setup of point data.
Refer to the separate volume "setup software instructions manual" about the detailed setting direction.
※2 Explanation of Point Data tables described in the following pages may omit the columns of "Servo gain select" and "Loop mode select".

- Point number
-Setting range:0 to 253
- Speicify this point number to perform settings and operations.
- Use 8 bit external input for external specification by binary code.
- \quad Speed (Uv)
- Setting range:0 to $2147483647 \cdots$ (Without decimal points)

0 to $214748364.7 \cdots$ (One place for decimals) 7

- Set this below motor maximum rotation speed.
- Position data (U)
-Setting range: -2147483648 to $+2147483647 \cdots$ (without decimal points)
-214748364.8 to $+214748364.7 \cdots$ (One place for decimals)
However, this must be within effective stroke.
-Whether this data is treated as an incremental amount (incremental command) or as a coordinate
(absolute command) is determined by operation patterns.
- Acceleration (Uv/ms)
-Setting range:0 to 65535
-Acceleration and deceleration are the same. (Refer to explanation of page 4-6)
- S-shaped acceleration/deceleration time(ms)
- Setting range: 0 to 32767
-Acceleration and deceleration are the same. (Refer to explanation of page 4-7)
- Current limit (\%)
- Setting range:0 to 510 (\%) • • At every 1 (\%)
- To set this to "0"does not mean 0 (\%) but without current limit.
(For rotation type motors, current limit are treated the same as torque limit.)
In other words, operation is possible up until motor peak torque.
Set this to "0" for usual positioning.
- In general, set this current limit only when striking stop operation is performed.

Setting this current limit will cause endless overflowing or operations.

- Larger current than the maximum current determined by motors will be limited by instantaneous maximum current.

4．Positioning Function

Move mode
－See the move modes as follows：
a）Mode 1
00：Point data is not set 01：Positioning operation effective
10：Reserved
11：Reserved
b）Mode 2
00：Final move 01：Continuous move
10：Reserved
11：Reserved
c）Mode 3
Set this to＂ 0 ＂．
d）ABS／INC
0 ：Position data is absolute command．
1：Position data is incremental command．
e）Striking：WithoutWith
0：Normal move（Without striking）
1：Move by＂striking stop＂
f）Speed change：Stop／Continuous
$0:$ Stop and change speed operation（This is called the operation pattern 0 ．）
1：Continuous speed change operation
(This is called the operation pattern 1.)
a）Mode 1
Whether the point data is valid or invalid（not set）is set at＂Mode 1＂．
When＂Mode 1 ＂is＂ 01 ＂，execution is possible with valid data．
When＂Mode 1 ＂is＂ 00 ＂，＂ 10 ＂and＂ 11 ＂，data is invalid and operation becomes unfixed．
＜Combination examples of operation patterns＞

Data valid	W／Wo continue	Command position data	WWo striking	Operation pattern
Mode1	Mode2	ABS／INC	Striking	Speed change
Valid ＂01＂	Complete ＂00＂ Continue ＂01＂	Absolute command「0」	Normal move （Without striking）「0」	Stop and change speed $\lceil 0]$
		Incremental command 「1」		Stop and change speed「0」
		Absolute command 「0」		Continuous speed change「1」
		Incremental command 「1」		Continuous speed change「1」
		Absolute command 「0」	Move with stiking「1」	Stop and change speed 「0」
		Incremental command 「1」		Stop and change speed「0］
		Absolute command 「0」		Continuous speed change「1」
		Incremental command 「1」		Continuous speed change「1」

OMake sure to set a move point of＂Mode 2 ＂with a completion code＂ 00 ＂at the end of move pattern．

4. Positioning Function

d) Mode 2 and f) speed change (operation)

Operation pattern is according to "Mode 2" (With/Without continue of point execution).
When "Mode 2 " is " 00 ", the move is complete.
When "Mode 2 " is " 01 ", the move continues.
When "Mode 2 "is " 10 " and " 11 ", there will be "error 18 " at execution.
0 : Stop and change speed
After moving by a certain points, decelerates and stops, and makes positioning to the next point.
When "Mode 2 "is " 01 ", the move continues, and when "Mode 2 " is " 00 ", the move is complete at the point. Example)
※The last point of move pattern must have "Mode 2 " with " 00 " at the end.

Move starts at P001, then to P001 \rightarrow P002 \rightarrow P003 (temporarily stops at each point). Since "Mode 2" at P003 is " 00 ", positioning and move is complete here.
Thus, when "Mode 2" is set to " 01 " in the point setting, the move continues to the next point (the point with 1 added to the currently moving point) up until " 00 "of "Mode 2"appears.

1: Continuous speed change operation

Set at a certain point, the move does not stop at the next point, but accelerates or decelerates according to the set speed and then moves. When "Mode 2 " is " 01 ", the move continues and when "Mode 2 " is " 00 ", the move is complete at the point, which is the same as' stop and change speed operation'.
Example)

Move starts at P001, and then to $\mathrm{P} 001 \rightarrow \mathrm{P} 002 \rightarrow \mathrm{P} 003$ with continuous speed change, and the move is complete at P003.
The point where the speed change is complete point where is a set position as the moving point.

4. Positioning Function

<Notes for continuous speed change operation>
Continuous speed change does not occur in the following cases:
(1) The direction of move changes in the position data setting.(e.g. Forward \rightarrow reverse)
(2) Continuous speed change point is more than 8.
(3) Point operation to be executed is stop and change speed operation.
(4) The next point operation is stop and change speed operation.
(5) "Mode 2 " includes " 00 " (feeding complete).
(6) Striking stop operation is being set.
(7) Dwell time is being set(to other than 0).

On the other hand, the following functions are restricted when continuous speed change is used:
(8) S-shaped acceleration/deceleration; At all the point numbers where continuous speed change is set, the move is a straight acceleration/deceleration even if parameters for S-shaped acceleration/deceleration are set.
(9) Handshaking of Output; At the point where continuous speed change is orated, Output handshaking is not executed even if it is set.
However, in the cases from (1) to (7) shown above where continuous speed change does not actually occur in spite of the setting, Output handshaking is executed.
Customers are requested, generally, not to set Output handshaking under continuous speed change operation configuration.
c) Mode 3

- Set " 0 " here, as this is a reserved zone.
d) ABS / INC

This determines as what kind of command the value set by position data will be treated.
0: Absolute command: Position data is treated as absolute coordinate system (user coordinate system).
Example) When positioning by absolute command at the position data of $150.0[\mathrm{~mm}$], assuming that the current position is $100.0[\mathrm{~mm}]$;

Thus, moves forward by 50.0 [mm] and get positioned at $150.0[\mathrm{~mm}$].
Therefore, the move amount varies depending on the current position.

1: Incremental command: Position data is treated as amount of feeding (user coordinate system).
Example) When positioning by incremental command at the position data of $150.0[\mathrm{~mm}$], assuming that the current position is $100.0[\mathrm{~mm}]$;

Thus, moves forward by $150.0[\mathrm{~mm}]$ and get positioned at $250.0[\mathrm{~mm}]$. Therefore, the position varies depending on the current position.

4. Positioning Function

e) Striking: WithoutWith

Sets with / without striking stop in the point move.
0 : Normal move (without striking) setting
1: Striking stop setting
OStriking stop
When striking stop is set, see the actual operation of striking stop as follows:

(1) Positioning move toward the stopper
(2) Strikes against the stopper, the current value stops, the ideal value keeps moving, and deviation accumulates.
(3) Stops moving when penetrated pulse(deviation) \geqq Stp_P(parameter).
(Even if not reaching positioning point.)
(4) During dwell time, pushing operation with penetrated pulse (deviation).
(5) After dwell time, penetrated pulse is cleared.
(6) Positioning complete or next move.
to Notes to
-When striking stop is used, set the current limit (torque limit) as well as this setting. Striking operation without current limit may cause overloading.

- In the normal positioning, make sure to set "the current limit = 0 ."
-When Stp_P(parameter)is small, or when deviation is large during move due to high speed/acceleration (deviation \geqq Stp_P), striking stop may occur accidentally during move. Make sure to keep the speed low.
－Move example1（Action）
a）Absolute command single move

Point number	Speed	Postion	Move Mode										$\begin{gathered} \text { है } \\ \underline{\underline{\underline{E}}} \\ \stackrel{\rightharpoonup}{0} \\ \underline{E} \\ \hline \end{gathered}$	Output			IP	$\begin{aligned} & \overline{0} \\ & 0.0 \\ & 0.0 \end{aligned}$			
			$\begin{aligned} & \overline{\mathrm{D}} \\ & \stackrel{\text { D}}{2} \end{aligned}$		$\frac{\mathbb{N}}{\stackrel{\delta}{\delta}}$		$\frac{\mathbb{O}}{\frac{0}{8}}$		$\begin{aligned} & \sum_{0}^{3} \\ & \sum_{0}^{2} \\ & \text { 㔺 } \end{aligned}$					$\stackrel{\otimes}{\stackrel{\circ}{\gtrless}}$	Delay	\％					
	＊	＊			＊	ms					\％		＊			ms					
1	10.0	200.0	0	1			0	0	0	0	0	0	250	0	0	0	0.0	0	0	0	0000

（1）When start moving by P001assuming that the starting point： 90.0
（2）When start moving by Poo91 assuming that the starting point： 290.0
b）Incremental command single move

Point number	Speed	Position	Move Mode											Output			IP	$\overline{\overline{0}}{ }_{0}^{0}{ }^{0}$			
			$\begin{aligned} & \overline{\mathrm{O}} \\ & \stackrel{\text { D}}{2} \end{aligned}$		$\frac{\mathbb{N}}{\frac{\mathrm{D}}{\mathrm{D}}}$		$\begin{aligned} & \infty \\ & \frac{0}{8} \\ & 2 \end{aligned}$	$\begin{aligned} & \text { O } \\ & \text { N } \\ & \text { 唯 } \end{aligned}$	$\begin{aligned} & 3 \\ & \sum_{3}^{3} \\ & \text { en } \\ & \text { 稁 } \end{aligned}$					$\stackrel{\otimes}{2}$	Delay	$\frac{8}{8}$					
	＊	＊			＊	ms					\％		＊			ms					
1	10.0	200.0	0	1			0	0	0	1	0	0	250	0	0	0	0.0	0	0	0	0000

（1）When start moving by P001 assuming that the starting point： 100.0
（2）When start moving by P001 assuming that the starting point： 150.0
c）Incremental command stop－and－change－speed

Point number	Speed	Position	Move Mode										$\begin{aligned} & \text { E} \\ & \text { 틍 } \\ & \text { Z } \end{aligned}$	Output			IP	$\overline{\overline{0}} \stackrel{0}{\square}$			
			$\begin{aligned} & \overline{\mathrm{O}} \\ & \stackrel{\text { D}}{2} \end{aligned}$		$\begin{aligned} & \mathbb{X} \\ & \stackrel{\text { O}}{2} \end{aligned}$		$\begin{aligned} & \stackrel{\otimes}{8} \\ & \stackrel{0}{2} \end{aligned}$	$\begin{aligned} & \text { O } \\ & \text { 关 } \\ & \text { 唯 } \end{aligned}$	$\begin{aligned} & 3 \\ & 3_{0}^{\prime} \\ & \text { eb } \\ & \text { 总 } \end{aligned}$					$\stackrel{\otimes}{\underset{\sim}{2}}$	Delay	$\frac{8}{8}$					
	＊	＊			＊	ms					\％		＊			ms					
1	40.0	100.0	0	1			0	1	0	1	0	0	250	0	0	0	0.0	0	0	0	0000
2	20.0	50.0	0	1	0	1	0	1	0	0	250	0	0	0	0.0	0	0	0	0000		
3	10.0	30.0	0	1	0	0	0	1	0	0	250	0	0	0	0.0	0	0	0	0000		

（1）When start moving by P001 assuming that the starting point： 200.0
※Even if the starting point is changed，move does not change．

4．Positioning Function

d）Absolute command stop－and－change－speed

Point number	Speed	Position	Move Mode								$\begin{aligned} & \frac{0}{8} \\ & \text { 苞 } \\ & \end{aligned}$			Output			IP	"흥			
			$\begin{aligned} & \overline{\mathbf{D}} \\ & \stackrel{\text { B }}{2} \end{aligned}$		$\begin{aligned} & \mathbb{X} \\ & \stackrel{\text { D}}{\Sigma} \end{aligned}$		$\begin{aligned} & \stackrel{y}{8} \\ & \stackrel{8}{2} \end{aligned}$	$\begin{aligned} & \text { O } \\ & \text { O } \\ & \text { ex } \end{aligned}$						$\stackrel{8}{\kappa}$	Delay	$\frac{8}{8}$					
	＊	＊			＊	ms					\％		＊			ms					
1	40.0	100.0	0	1			0	1	0	0	0	0	250	0	0	0	0.0	0	0	0	0000
2	20.0	150.0	0	1	0	1	0	0	0	0	250	0	0	0	0.0	0	0	0	0000		
3	10.0	180.0	0	1	0	0	0	0	0	0	250	0	0	0	0.0	0	0	0	0000		

（1）When start moving by P001 assuming that the starting point： 0.0

（2）With the same setting，moves $\mathrm{P} 002 \rightarrow \mathrm{P} 003$ reversely after moving by P001 assuming that the starting point： 200

e）Incremental command continuous speed change

Point number	Speed	Position	Move Mode								$\begin{aligned} & \text { 후 } \\ & \frac{8}{8} \\ & \frac{8}{8} \\ & \end{aligned}$		$\begin{aligned} & \text { 总 } \\ & \underline{W} \\ & \frac{0}{\delta} \end{aligned}$	Output			IP	$\overline{\overline{0}} \stackrel{0}{0}$			
			$\begin{aligned} & \overline{\mathbf{D}} \\ & \stackrel{D}{\Sigma} \end{aligned}$		$\frac{\mathbb{N}}{\stackrel{\text { O}}{2}}$		$\begin{aligned} & \stackrel{\otimes}{8} \\ & \underset{\sum}{0} \end{aligned}$	$\begin{aligned} & \text { O } \\ & \text { 苞 } \\ & \text { 学 } \end{aligned}$	$\sum$$\sum_{0}^{0}$気竞					$\stackrel{\otimes}{\underset{\sim}{2}}$	Delay	$\frac{8}{8}$					
	＊	＊			＊	ms					\％		＊			ms					
1	40.0	100.0	0	1			0	1	0	1	0	1	250	0	0	0	0.0	0	0	0	0000
2	20.0	50.0	0	1	0	1	0	1	0	1	250	0	0	0	0.0	0	0	0	0000		
3	10.0	30.0	0	1	0	0	0	1	0	1	250	0	0	0	0.0	0	0	0	0000		

（1）Startmoving by P001 assuming that the startin point ： 200.0
Speed change point of P001 and P002 is a registered position，however，it changes a little due to CPU sampling delay，motor speed or acceleration／deceleration setting．When accuracy for speed change point is desired，use a stop－and－change－speed operation．
f) Absolute command continuous speed change

Point number	Speed	Postion	Move Mode											Output			IP	흠.			
			$\begin{aligned} & \overline{\mathbf{D}} \\ & \frac{0}{0} \end{aligned}$		$\frac{\mathbb{N}}{\stackrel{\text { O}}{\circ}}$		$\begin{aligned} & \stackrel{0}{8} \\ & \stackrel{8}{2} \end{aligned}$	$\begin{aligned} & \text { U } \\ & \text { 关 } \\ & \text { 唯 } \end{aligned}$						$\stackrel{\otimes}{\underset{\sim}{2}}$	Delay	$\frac{8}{8}$					
	*	*			*	ms					\%		*			ms					
1	40.0	100.0	0	1			0	1	0	0	0	1	250	0	0	0	0.0	0	0	0	0000
2	20.0	150.0	0	1	0	1	0	0	0	1	250	0	0	0	0.0	0	0	0	0000		
3	10.0	180.0	0	1	0	0	0	0	0	1	250	0	0	0	0.0	0	0	0	0000		

(1) Start moving by P001 assuming that the starting point: 0.0

(2) Startmoving by P001assuming that the starting point: 200.0

Stop-and-change-speed operation up to P001: 100.0, continuous speed changeP002 \rightarrow P003. Because rotation is reversed, P002: 150.0 P003: 180.0

P001: 100.0
g) Continuous speed change for more than 8 points
(1) When operation is by "continuous speed change" for P001 to P010
※Continuous speed change for P001 to P007, stop-and-change-speed for P008, and again continuous speed change for P009 \rightarrow P010.

P003
Speed

4. Positioning Function

- Starting point "lp" at interruption start

When an interruption start is input during move, the point set here will be started as an interruption start. In other words, when an interruption start is input, the move being executed is aborted and start moving by the point number "Ip"which is set at the point data.

However, during interruption start, another interruption start cannot be input.

- Dwell time (msec)

Dwelltime function is that when the move is complete and current position is in-position, wait for the time set here and then perform positioning complete or the next move.
(0 Example) In the case of 1 point move: After the point move is complete, wait for dwell time and positioning complete is output. And in the middle of continous move, wait for the dwell time and then to the next move.
© As a special treatment, when "Striking stop" is performed with the dwell time being set, pushing control is performed for the penetrated pulse of the dwell time, and after that deviation is cleared.
© If the dwell time oter than 0 is set in the continuous speed change mode, the point is for stop-and-change-speed, not for continuous speed change.
－Move example 2 （Striking • Interruption Move）
The moves below are applications of Striking stop and interruption Move．

Point number	Speed	Position	Move Mode										写	Output			IP	$\stackrel{\overline{0}}{0}$			
			$\begin{aligned} & \overline{\mathbf{D}} \\ & \stackrel{D}{\delta} \end{aligned}$		$\begin{aligned} & \mathbb{ভ} \\ & \stackrel{\text { D }}{2} \end{aligned}$		$\begin{aligned} & 08 \\ & \frac{8}{8} \end{aligned}$	$\begin{aligned} & \text { 花 } \\ & \text { 要 } \end{aligned}$	$\begin{aligned} & 3 \\ & \sum_{i}^{3} \\ & \dot{0} \\ & \text { 竝 } \\ & 0 \end{aligned}$					$\stackrel{\otimes}{\underset{\sim}{2}}$	Delay	$\frac{0}{8}$					
	＊	＊			＊	ms					\％		＊			ms					
1	40.0	100.0	0	1			0	1	0	0	0	1	250	0	0	0	0.0	0	11	0	0000
2	20.0	150.0	0	1	0	1	0	0	0	1	250	0	0	0	0.0	0	11	0	0000		
3	5.0	180.0	0	1	0	1	0	0	1	1	250	0	40	0	0.0	0	10	10000	0000		
4	5.0	－5．0	0	1	0	1	0	1	0	0	250	0	40	0	0.0	0	10	0	0000		
5	40.0	0.0	0	1	0	0	0	0	0	0	250	0	0	0	0.0	0	11	0	0000		
10	5.0	－5．0	0	1	0	1	0	1	0	0	250	0	40	0	0.0	0	0	0	0000		
11	40.0	0.0	0	1	0	0	0	0	0	0	250	0	0	0	0.0	0	0	0	0000		

（1）From Starting position ： 0.0 ，start by P001 and change speed，then to P002．
（2）Move by P002，change speed，then to P003．
（3）During move by P003，strike the stopper and current position is stopped （with 40% current limt hereafter）．
（4）With the command value being output as is，idial position is allowed to enter and deviation pulse of Stp＿P （penetrated pulse）accumulates，then the move is cancelled．
（5）During the dwell time $(10.0 \mathrm{msec})$ ，pushing operation for the penetrated pulse．
（6）After the dwell time，deviation pulse is cleared．
（7）Return＂ 5.0 ＂by P004 with an incremental command．（with 40% current limit so far．）
（8）Return to the starting position by P005 high speed move．
This is the end of a series of operations．However，you can return to the starting position during move by interruption start．
［When an interruption is started during move by P001，P002 andP005，return to the starting position with high speed by P011．
When an interruption is started during move by P003 andP004，continuous move is performed from
$\mathrm{P} 010 \rightarrow \mathrm{P} 011$ ，with current limit first and then return with high speed．

4. Positioning Function

- Output
a) Code
b) Type
c) Delay

Functions of Output are determined by the 3 parameters above.
See the descriptions of each parameter.
a) Code

Sets the data for Output. Output is 4 bits from " 00 to 15 ."
b) Type

Sets the function of Output as follows:
0 : Without Output operations. No change from the previous Output.
1: When the move is complete with handshaking mode, MSTR signal is output and wait until MFIN signal is input. When MFIN signal is input, the next move is performed.
2: Only Output, without handshaking.
c) Delay

Sets the timing for outputting in Output as follows:
0 : Output along with the start of the point move.
-1: Output when the point move is complete.
Positive value: Output after the move value set here (incremental value).
However, if this is larger than the value of point move, Output after the move is complete.

Notes *1) Output must be selected at general output selection.
(SEL1 and SEL2 are ON, and SEL3 is OFF.)
*2) When Output type is 1 , Output is output at the Output timing. However, Output becomes 0 once after handshaking is complete.
*3) When operation pattern is continuous speed change, do not use Output type 1, Handshaking type.
*4) Output is not output at the final point move.
When the move is complete with 1 point move, there is no Output. Therefore, set a dummy point (the same position) for output setting.

- Move example 3 (Output function)
a) In the case of OutputType $\rightarrow 2$

Point number	Speed	Position	Move Mode											Output			IP	$\overline{\overline{0}} \stackrel{0}{0}$			
			$\begin{aligned} & \overline{\mathrm{D}} \\ & \stackrel{\text { D}}{2} \end{aligned}$				$\frac{\ddot{8}}{8}$	$\begin{aligned} & 0 \\ & \text { O } \\ & \text { N } \\ & \text { wa } \end{aligned}$	$\begin{aligned} & \sum_{6}^{3} \\ & \sum_{6}^{6} \\ & \text { 它 } \end{aligned}$					$\stackrel{\otimes}{2}$	Delay	$\frac{8}{8}$					
	*	*			*	ms					\%		*			ms					
1	40.0	100.0	0	1			0	1	0	0	0	0	250	0	0	2	0.0	1	0	0	0000
2	30.0	200.0	0	1	0	1	0	0	0	0	250	0	0	2	-0.1	2	0	0	0000		
3	20.0	300.0	0	1	0	1	0	0	0	0	250	0	0	2	50.0	3	0	0	0000		
4	10.0	400.0	0	1	0	0	0	0	0	0	250	0	0	0	0.0	0	0	0	0000		

(1) Since Output timing for P001 is " 0 ", Output along with start.
(2) Since Output timing for P002 is "- 0.1 (negative)", Output along with positioning complete.
(3) Since Output timing for P003 is " 50.0 ", Output in " 50 " incremental feeding after move by P003.
(4) When OutputType is " 0 ", no change in Output.
b) In the case of OutputType \rightarrow "1"

Point number	Speed	Position	Move Mode										$\begin{aligned} & \text { है } \\ & \text { 弟 } \\ & 0 \end{aligned}$	Output			IP	$\sum_{\overline{0}}^{\overline{0}} \stackrel{y}{\underline{0}}$			
			$\begin{aligned} & \overline{\mathbf{D}} \\ & \stackrel{8}{\delta} \end{aligned}$		$\frac{\mathbb{N}}{\stackrel{\otimes}{\delta}}$		$\begin{aligned} & \frac{3}{8} \\ & \frac{0}{2} \end{aligned}$							$\stackrel{\otimes}{\underset{\sim}{2}}$	Delay	$\frac{8}{8}$					
	*	*			*	ms					\%		*			ms					
1	20.0	100.0	0	1			0	1	0	0	0	0	250	0	0	1	0.0	1	0	0	0000
2	20.0	200.0	0	1	0	1	0	0	0	0	250	0	0	1	-0.1	2	0	0	0000		
3	20.0	300.0	0	1	0	1	0	0	0	0	250	0	0	1	50.0	3	0	0	0000		
4	20.0	400.0	0	1	0	0	0	0	0	0	250	0	0	0	0.0	0	0	0	0000		

In the case of OutputType: 1, handshaking is performed using input/output of MSTR and MFIN.
For example, in case of P001, Output timing is " 0 ", therefore, Output is output along with the start.
When the move by P001 is complete, MSTR outputs ON and waits.
When input MFIN turns "OFF \rightarrow ON", Output outputs" 00 "and enters the next move, and then Output is executeed according to the next move setting.

- Servo gain selection

By setting up servo gain selection of point data, four kinds of gains can be changed for every point.

The setting list of gains is as follows.

| Servo gain
 selection | Position loop
 proportional
 gain | Position loop
 integral time
 constant | Velocity loop
 proportional
 gain | Velocity loop
 integral time
 constant | Load inertia ratio | Torque
 command
 filter |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | The various functional effective conditions of the usual function become effective. | | | | | |
| 1 | KP1 | TPI1 | KVP1 | TVI1 | JRAT1 | TCFIL1 |
| 2 | KP2 | TPI2 | KVP2 | TVI2 | JRAT2 | TCFIL2 |
| 3 | KP3 | TPI3 | KVP3 | TVI3 | JRAT3 | TCFIL3 |
| 4 | KP4 | TPI4 | KVP4 | $T V 14$ | JRAT4 | TCFIL4 |

※Movement is performed by the above-mentioned servo gain setup according to setting up servo gain selection with point data. However, it is continuously used by servo gain selection of the first point performed, at the time of continuation movement in variable speed.
※Servo gain selection cannot be used together with auto tuning. Priority is given to auto tuning when auto tuning is effective.

4. Positioning Function

A jump / loop function of a point

(1) Overview

A jump/loop of a point are possible by setting each up by the following point-data setup.
(A) Loop mode select: The kind of a jump/loop
(B) JP: The point number of a jump place
(C) Repeat times: The number of times which does a loop

A jump / loop setup of the point

(2) Data setting guideline of a jump / loop function
(A) Kinds of loop (loop mode select)
(a) Normal mode
(Seting value:0)
No jump. No loop.
(b) Unconditional jump (Seting value: 1)

Unconditional jump is done to other points. Only FEED_END(Mode 2:00) of move mode is effective, it does not jump when other.
(c) 1 point jump
(Seting value: 2)
This point is repeatedly performed by the number of times of repetition.
Only stop operation (operation pattern: 0) of move mode in variable speed is effective, it does not perform except it.
(d) Condition jump (Seting value: 3)

Only the number of times of specification is jumped on other points. Only stop operation (operation pattern: 0) in variable speed is effective, and move mode does not jump it other than it.

The nest to a maximum of 15 is possible for a condition jump. However, when other jumps are in a loop, it becomes to a maximum of 15 including the jump.
When the jump place which does not become a nest in a condition jump is specified: It is set to ERR 1A. Moreover, when the number of nested (other jumps are included) is 15 or more: It is set to ERR19.

4. Positioning Function

(B) JP

The point number of a jump place is set up.
(C) Repeat times

The number of times of a repeat in 1 point jump and conditional jump is specified.

About the relation of each data of point data

	Loop mode selection	JP	Repetition	Operation conditions
Normal mode	0	-	-	-
Unconditional jump	1	O	-	Mode2:0 (When the last moving)
1 point jump	2	-	O	Speed change:0 (When changing speed and stopping)
Conditional jump	3	O	O	Speed change:0 (When changing speed and stopping)

O: data to be set up.
-:data which does not need a setup, and it is ignored even if it puts in data.
Loop command is not executed when loop command is inputted except a condition of operation.
(3) Example of operation

Functional explanation of each jump/loop is given for a point-data setup of the front page for an example.
(A) Conditional jump

Execution of the point [0] will perform the point [253] after point [0] execution.
※That makes it Infinite loop operation. Commands such as a cancel command need to be input to stop it.
(B) 1 point jump

If the point [2] is performed, after point [2] execution, the point [3] will be repeated and performed 100 times.

※Execution by one point is also possible, and when the point [3] is performed, P3 is repeated and performed 100 times, then it ends.
(C) Conditional jump

Execution of the point [6] will perform the point [7 to 8] 3 times after point [6] execution, and the point [7 to 9] is performed 3 times. Since it is in the nest state, finally, the point [7 and 8] is performed 9 times and the point [9] is performed 3 times.

- Operations by external input

See the descriptions of operations by external input. This is mainly operated by outputs such as sequencer.

- Point specification move 1
(A) Input a point number at the external point specification input (IN1 to 8), and after data set up, the start input (RUN) turns OFF \rightarrow ON.
(B) MOVE (while operation output) becomes ON , and the move starts. (Start input remains ON.)
(C) After the move completes and the positioning complete output (PFIN) turns ON, turn OFF the start input (RUN).
(D) Start input (RUN) turns OFF, therefore, MOVE (while operation output) and PFIN (positioning complete output) turn OFF.
(E) Start in the same way as (A).
(A)

$\mathrm{T} 1 \geqq 0 \mathrm{~ms} \quad$ (data set up time)
$\mathrm{T} 2 \geqq 40 \mathrm{~ms}$ (Data hold time)
$\mathrm{T} 3, \mathrm{~T} 5 \geqq 20 \mathrm{~ms}$ (Start acceptance delay time)
$\mathrm{T} 4 \geqq 0 \mathrm{~ms} \quad$ (Start signal holding time)
$\mathrm{T} 6 \geqq 40 \mathrm{~ms} \quad$ (Start signal OFF time)
- Point specification move 2

This section describes the feeding stop and move cancellation.
(A) Input a point number at the external point specification input (IN1 to 8), and after data set up, the start input (RUN) turns OFF \rightarrow ON. MOVE (while operation output) turns ON and the move starts.
(B) Turning OFF the start input (RUN) during operation decelerates the motor. (This status is called feeding stop.)
(C) Turning on the start input (RUN) again in the feeding stop status resumes the point move set at (A) and positioning is performed (continues).
(D) Start in the same way as (A).
(E) Turn ON the cancellation input (CACL) during move, move cancellation mode makes the motor decelerate.
(F) When the move cancellation is complete with the motor decelerating and stopping, positioning complete output (PFIN) turns ON, which means the completion of cancellation.
(G) When positioning complete output (PFIN) turns ON, turn OFF the start input (RUN). If MOVE (during operation input) and PFIN (positioning complete) are OFF, cancellation is complete.
(H) Then, input a desired point number at the point specification input to start.

- Point specification move 3

This section describes interruption, which is very useful for forced return operation.
(A) Input a point number at the external point specification input (IN1 to 8), and after data set up, the start input (RUN) turns OFF \rightarrow ON. MOVE (while operation output) turns ON and the move starts.
(B) If it interrupts during operation and a starting input (IRUN) is turned on, it will become interruption move mode and a motor will be a slowdown stop.
(C) A motor interrupts from the point data of the specified point after a slowdown stop, reads the point (IP), and starts movement on an interruption point.
*Beforehand, interruption point (IP) must be set up in point data.
(D) The completion output (PFIN) of positioning is turned on in the place which completed point movement of an interruption point.
(E) After the completion output (PFIN) of positioning turns on, interruption movement will be completed if a starting input (RUN) and an interruption starting input (IRUN) are turned off.

- Home-position return

1) For incremental encoder
(A) Turning homing input (ZRT) OFF \rightarrow ON makes the home-position return operation start.
(B) When home-position return operation starts, while operation output (MOVE) turns ON.
(C) Upon completion of the home-position return, positioning complete output (PFIN) and homing complete output (ZFIN) turn ON.
(D) When homing input (ZRT) turns OFF, while operation output (MOVE) and positioning complete output (PFIN) turn OFF.
(E) Homing output (ZFIN) remains ON, however, it is OFF in the following cases:
(In other words, home-position return operation is necessary for the following cases.)
-When homing is started again.
-When alarms are issued.
-When the main power source turns OFF. (The same for turning it ON again.) -When control power turns OFF. (The same for turning it ON again.)
Note) Do not apply cancellation, feed hold and servo OFF during homing from low speed feeding until operation complete (the point (D)).

4. Positioning Function

2) For absolute encoder

When an absolute encoder is used, Home-position return operation is not necessary. Therefore homing related Inputs/Outputs are changed as follows. Therefore homing related outputs are different form when an incremental encoder is used.

When incremental encoder is used.	When absolute encoder is used.
Homing Input (ZRT)	Home-return Input (ZRT)

And functions are;
(A) Turning the home-return Input (ZRT) OFF \rightarrow ON starts the home-return operation.

Home-return operation makes the move to the position (coordinate) whose origin has been set.
(B) While operation output (MOVE) turns ON, which is the same as usual point move.
(C) Positioning complete (PFIN) and in-position output (INPS) turn ON when the positioning is complete to the pre-set coordinate.
(D) Turn OFF the home-return (ZRT), and while operation output (MOVE) and positioning complete output (PFIN) turn OFF.
(E) In-position output (INPS) remains ON. However, it turns OFF when the position deviation becomes larger than in-position width in the next move, because conditions for this output are that current position coordinate should match the one with its origin set and also be within in-position.

※When absolute encoder home-return function is effective, the movement and the method become the same as the case of incremental encoder combination.

Please refer to [1 For incremental encoder], in that case.

- JOG feeding (Manual feeding)

1) For incremental encoder

- While forward manual feeding (+JOG) Input is ON, the move is toward positive direction of the coordinate at the speed of ($L _j o g$) set by a parameter.
- While backward manual feeding (-JOG) Input is ON, the move is toward negative direction of the coordinate.
-When manual high speed (RAP) is input during +JOG (or -JOG) is being input, the move is at the speed of parameter (H jog).

- 1-step feeding

Turning OFF to ON the +1 step(+1step) or the -1 step (-1step) makes the move by a certain pulse numbers set by a parameter.
(A) Turning OFF to ON the +1 step input (+1step) while manual high speed input (RAP) if OFF makes the move toward positive direction by the "L_stp" set amount at the " L _jog"set speed.
(B) In the same way, turning OFF to ON the -1 step (-1step) makes the move toward negative direction.
(C) Turning OFF to ON the +1 step input (+1step) while manual high speed input (RAP) if ON makes the move toward positive direction by the " H _stp" set amount at the " H _jog"set speed.
(D) In the same way, turning OFF to ON the -1 step (-1 step) makes the move toward negative direction.
-Keep the 1 -step input ON during move. If it is OFF during move, the motor decelerates and stops into feed hold status. And when the input is turned ON again, the move continues.

- Cancellation input (CACL) is also effective.

- Home position setting when battery error occurred (home position setting)

Perform home position setting under the state battery error occurred by refeering the following procedure:
(1) Disable software limit detecting function.
(2) Turn on battery alarm clear (BATCLR), and then turn off it after lapse of more than 4 seconds.
(3) Turn on alarm clear (ARST), and then turn off it after lapse of more than 40 seconds.
(4) Perform home position setting procesure (A) to (D).
(5) Enable software limit detecting function.

Note: Setting of software limit detection is stored in EEPROM. Make sure to return the setting "enabled" to use software limit detecting function.

- Home position setting (Origin setting)

Home position setting is the way to set the current position as an origin, and used for both incremental and absolute encoder.
Move to the position where you want to set as an origin by JOG feeding or others, turn on the start input (RUN) with setting of (HOME) input, and the current position is set as an origin without any move.
(A) Move to where you want to set as an origin by JOG feeding or others.
(B) Set input (HOME) to ON first, then turn the start input (RUN) OFF \rightarrow ON.
(C) When origin setting is complete, the positioning complete output (PFIN) and homing complete (ZFIN) turn ON.
(D) Turning OFF the start input makes the during operation output (MOVE) and positioning complete output (PFIN) OFF, and home position setting is complete.

* Do not apply cancellation or servo OFF during home position setting.

4. Positioning Function

External data setting

Using "Point teaching" function (External data setting), the amplifier allows to set position points by external data.

- External data acceptance: To accept external data, set bit " 0 " of [SW1] to bit " 1 " and also bit " 3 " of [SW2] to bit "0" in the parameter group D.
- Before "Point teaching", conditions of speed, positioning operation active and absolute command need to be set up previously.
Input a specified point number and then turn ON the external input signal E_STR 8 (CN1-22pin), a position where the motor is currently stopped (Ideal position) can be registered as the coordinate value with that specified point number.

Position points setting by external data can be registered in External operation input mode except a status of a motor is in motion or alarms.

(-)
T1 >= 0 msec (data/command set up time)
T2 >= 40 msec (data/command holding time)
T3, T5 >= 20 msec (data/start-up acceptance delay time)
T4 >= 0 msec (data/start-up holding time)
(A) In External operation input mode, using JOG feeding or others, move to a desired position to register as a coordinate value (Point teaching).
(B) Input a specified point number for that posit ion (Point teaching)
and then, input signal (E_STR) OFF \rightarrow turns ON.
(C) Turn OFF input signal (E_STR) when output signal (PFIN) turns ON.

Then, output signal (PFIN, MOVE) ON \rightarrow start turning OFF
(Complete External teaching data setting.)

- Read this instruction to use positioning functions for the first time. -Important!! The following parameters are references for positioning. -
- Parameters for positioning functions (NC parameters) are a group to set positioning system. When input data values do not conform to mechanical configuration, make sure to verify the status, as this causes unintended erroneous operation.

After changing parameter 0A "M_dir", 3B "S_pls", 3C "U_pls", 3E "D_dpo", 3F "Unit," turn off the power supply and then turn on the power again. Refer to "R-Setup-Setup Software Instruction Manual" for the details.

- Parameters set for the first time use
OA "M_dir" Operation direction
3B "S_pls" Number of system divisions
3C "U_pls" Number of user divisions
3E "D_dpo" Velocity, Position data decimal point
3F "Unit" Setting unit
. "————" Encoder function
. "—___" -" Encoder resolution
\qquad _" Motor model number
Refer to System parameter.

1) Encoder function, resolution, and motor model number are determined when they are purchased (shipped setting values).
2) 3E "D_dpo": Decimal point for velocity and position data setting are designated.
" 0 " \cdots without decimal points
" 1 " \cdots one place of decimals
" 2 " \cdots two places of decimals
" 3 " \cdots three places of decimals
" 4 " \cdots four places of decimals
" 5 " \cdots five places of decimals

Important
Re-turn on the power supply after setting parameters 1), 4), 5), and 6).
3) $3 F$ "Unit":Setting unit

$$
\begin{aligned}
& " 0 " \cdots \text { Pulse } \\
& \text { "1"••mm }
\end{aligned}
$$

4) OA "M_dir":Motor operation direction is adjusted.
" 0 ": Positive direction coordinate/Rotary motor is CCW turn seen from shaft side.
"1": Positive direction coordinate/Rotary motor is CW turn seen from shaft side.
5) 3B "S_pls": Division number per one turn of motor
"S_pls" ="Encoder resolution " (in case of absolute encoder)
"S_pls" ="Encoder resolution " $\times 4$ (in case of incremental encoder)
(Detection multiplication)
<Sensor resolving power example>
(1) ABS-E (131072 P/R) \cdots "S_pls" $=131072$
(2) Incremental (2000 P/R) \cdots "S_pls" $=8000$
6) 3C "U_pls" :Travel distance per turn of a motor seen from user. Input setting unit of position data is determined at the above "D_dpo", "S_pls", and "U_pls". (※5 of parameters list in 4. Group D)
e.g.1) System moving 5 mm per single turn of motor with incremental encoder (8000-division).

Setting unit of position data: 0.001 mm

$$
\begin{aligned}
& \text { Unit = } 1 \\
& \text { D_dpo = } 3
\end{aligned}
$$

After writing the above values, close parameter setting for setting-up, and then open it again. (With the above process, setting of "Unit, D_dpo" is reflected as a parameter.)

S_pls= 8000
U_pls= 5.000 (Internal value: 5000)

If you set travel distance at 7.354 mm , set it to " 7.354 "in this step.
If you set velocity at $8 \mathrm{~mm} / \mathrm{s}$, set it to " $8.000 \mathrm{~mm} / \mathrm{s}$."

* The internal value means the value without decimal point.

Expression " 5.000 " means internal value " 5000 ."

* Perform setting so as to be S_pls>=U_pls (internal value).
e.g.2) System moving 5 mm per single turn of motor with absolute encoder (131072-division).

Setting of unit system is as follows:

$$
\begin{aligned}
& \text { Unit = } 1 \\
& \text { D_dpo = } 4
\end{aligned}
$$

After writing the above values, close parameter setting for setting-up, and then open it again.
(With the above process, setting of "Unit, D_dpo" is reflected as a parameter.)

$$
\text { S_pls= } 131072
$$

U_pls= 10.0000 (Internal value : 10000)
If you set travel distance at 1.235 mm , set it to " 1.2350 " in this step.
If you set velocity at $4 \mathrm{~mm} / \mathrm{s}$, set it to " $4.000 \mathrm{~mm} / \mathrm{s}$."

* Zero after decimal point can be omitted by setting-up.
* Positioning point varies depending on resolution levels of motor encoder, so make sure to set gear ratio of S_pls/U_pls so as to be 20 times or less.

Important information

- Perform setting so as to be "S_pls>=U_pls (internal value)."
- Set gear ratio S_pls/U_pls so as to be 20 times or less.

Re-turn on power supply after setting the above parameters.
After that, set "S_ovf" and "T_ovf."
Set "S_vmx," "T_vmx," "Accel," "S_rat," "S_inp," "Z_inp," "H_jog," "L_jog," "H_stp," "L_stp," "S_+OT," and "S_-OT" by referring the decided "U_pls" to perform Chapter 6 , trial operation verification.

4.Positioning Function

- Home position setting of absolute encoder
(A) Absolute encoder (PA035)
(A-1) Position creation for PA035S (Absolute encoder for incremental system)
- Division number per single-turn:131072 divisions/single-turn • • • 17-bit
- Multiple-turn: No data

(A-2) Position creation for PA035C being used by incremental system (No battery backup)
- Division number per single-turn:131072 divisions/single-turn • . . 17-bit
- Number of multiple-turn: 32678 turns • . . 15-bit Total 32-bit
* There are 33 bits for output signal from encoder, however, this servo amplifier uses only 32 bits.

(A-3) Position creation for PA035C being used by absolute system (With battery backup)
- Division number per single-turn:131072 divisions/single-turn • • • 17-bit
- Number of multiple-turn: 32678 turns • • 15-bit Total 32-bit
* There are 33 bits for output signal from encoder, however, this servo amplifier uses only 32 bits.

(B) Flowchart of home position setting of absolute encoder

Decide each parameter according to machine specifications.

(C) Example of home position determination

Ball screw drive: Direct-coupled $P=10 \mathrm{~mm} . I=800 \mathrm{~mm}$
Travel distance set unit: 0.001 mm Velocity unit: $0.0001 \mathrm{~mm} / \mathrm{sec}$
(1) Set as follows:

M_dir="0". Encoder and user coordinates increase in the same direction.
D_dpo="2" (two places of decimals) $\cdot 0.01 \mathrm{~mm}, 0.01 \mathrm{~mm} / \mathrm{sec}$
Unit ="1" (mm)
(2)S_pls=131072•By referring division number.

U_pls=10.0000… \cdot. Specify 10 mm -move per single turn of motor.
S_ovf=40.0000
After setting the above parameter, turn on the control power again.
(3)S_vmx=750.0000 (mm/sec) • By referring Nmax=4500min ${ }^{-1}$

T_vmx=200.0000 (mm/sec) • By referring T_vmx<S_vmx
H_jog=20.0000 (mm/sec) \cdots Start trial operation at slow velocity.
L_jog=1.0000 (mm/sec) \cdots. Start trial operation at slow velocity
Z_hsp=20.0000 (mm/sec) \cdots Start trial operation at slow velocity.
Accel $=250.0000(\mathrm{~mm} / \mathrm{sec}) \cdot$ Setting to perform " 0 at rising edge $\rightarrow 4500 \mathrm{~min}^{-1 "}$ for 300 m sec.
A_ofs $=2000.0000(\mathrm{~mm}) \cdot$ Specify the amount of $a=2000.0000 \mathrm{~mm}(\beta:$ margin $>0)$
Note: This example shows "A_ofs" is set to explain the functions, however, if encoder effective stroke is longer than the one of machine (2 times or more), you can use as " $A _o f s=0$ " is set.

This is preset at the center of encoder stroke, when $A _o f s=0$.

Z_add $=0.0000(\mathrm{~mm}) \cdots \cdot$ User coordinates shall be 0 at home position setting.
(4)Feed to the position you set as home position by JOG.
(5)Home position setting \rightarrow completed \cdots Encoder coordinates system becomes dotted line.
(\rightarrow Refer to home-position setting on 4-38 page)
(6) Home position setting completed with the above steps.
(7)Check ($\alpha+$ operational stroke $+\beta$) <32768rev

If the value exceeds encoder stroke, encoder cannot be used.
(In this case, the encoder operates the next encoder range and causes damages to machine.)

- Note

Make sure to perform home position setting after you change M_dir, D_dpo, Unit, S_pls, U_pls, A_ofs, Z_add, perform motor conversion, and release battery alarm.

- Home position setting of incremental encoder

Incremental encoder needs to perform homing to conform electrical home position to mechanical home position at power-on.
If homing is required, ZFIN-output of "I / O" is turned off. In that case, perform homing.
When homing is completed normally, ZFIN-output is turned on.
The parameters need to perform a minimum setting for homing are as follows:
$10 Z_{\text {_hsp: }}$ High speed on zero-return (U U)
This is the velocity set at " Z _dir," having no deceleration signal (contact point closed), as this is start after homing.

11 Z_sp: Slow speed on zero-return (U U)
This is the reversed velocity when escaping from deceleration signal by rotating in negative direction, after decelerating in response of deceleration signal (Z_{-}hsp) in homing operation.

0E Z_typ: Zero-return type (-)
Set type of homing. Two types, type 0 and 1, are available.
OF Z_dir: Zero-return direction (-)
Set rotational direction for homing.
12 Z_add: Zero-position coordinates (-)
Set user coordinates value when homing completed.
Set the above parameters to perform homing.

1.1.1 Normal

- Only after setting of parameters for reference of positioning and home position, point setting and external point move become available.
- If any changes to parameters for reference of positioning and home position occurred, perform resetting of the parts after the affected changes from the first.

4. Positioning Function

- Description of infinite motor rotation specification

- Outline

Specification for infinite rotation is a mode used for rotating solids such as rotating table.
Specifically, if coordinates rotating in positive direction exceeds the values of "+ stroke," the coordinates changes to the value of "- stroke."
Permanent rotation in positive direction is available by processing coordinate system in the above way. (This can be applied equally to reversed rotation.)

For example, if in the condition that + stroke $=1000$, - stroke $=-1000$," rotation is in positive direction, and coordinates exceeds 999, the coordinates changes to -1000 .
Function of rotation in the shortest way is also supported, if " + " travel distance exceed $1 / 2$ of whole coordinates (figures after the decimal point rounded up), the move is in the shortest way.
(When in "-" travel distance exceeds $1 / 2$ of whole coordinates (figures after the decimal point rounded down), the move is in the shortest way.)
For example above, When 1000- $(-1000) / 2=1000$, rotation is in the shortest way.
For example, if present position is -500 and target value is 999 , rotation is in the shortest way. (Rotation is in negative direction instead of positive direction.)
If present position is 500 , and target value is 501 , rotation is in the shortest way.
Functions for range signal is also extended to support infinite coordinate system.
You can set range signals including unique points in the range "- 900 to 900 " that could not be set normally. In this case, if present position is within the range either "- 900 to - 1000 or " 900 to 999 ," range signal is turned on.

- Parameter to be added or changed

15: +STROKE [+Stroke]
Set the maximum values of coordinates in + direction.
(The value under this value shall exactly be the maximum coordinates value.)
16:A_ofs [Absolute encoder effective stroke length \rightarrow - stroke]
Set the minimum values of coordinates in-direction. (The connotation changed.)
40:Sw1 [Function switch1]
Perform setting of switching between "infinite coordinates system" and "rotation in the shortest way."

Coordinates Selection
0 : Normal coordinates
1 : Infinite coordinates

> Shortest way Selection
> $0:$ Shortest way off
> $1:$ Shortest way on

Zone signal (zon) function enhancement
0 : Normal function
1 : Enhance zone signal function
*No changes to function of bit $0,1,2,6,7$.

4. Positioning Function

- Explanation of operation in usage example

Condition: Motor resolution: 8000P/R
Mechanical gear ratio: 187:1
3B:S_pls=8000
3C:U_pls=8000
Since motor rotates 187 times per 1 mechanical rotation, the traveling range is 187*8000=1496000P/R
$0-1496000$ (When $1496000=0$, it is $0-1495999$ accurately)
15:+stroke $=1496000$
16:-stroke =0
Speed in mechanism conversion 10min-1: 10*187*8000/60=249333
27: H_jog=249333
28:L_jog=249
Travel by 1 step is $360 / 8=45^{\circ} 1496000 / 8=187000$
29:H_stp=187000
$2 A: L$ stp $=1$
"4D: Sw1=0018" by rotating in the shortest way in infinite coordinates system.
The above are system parameters, the following are point data.

P6 : $112200\left(270^{\circ}\right)$

P5 : 935000(225 ${ }^{\circ}$)

P4 : 748000 (180 $\left.{ }^{\circ}\right)$

4. Positioning Function

Operational modes that can rotate in the shortest way are as follows only:
Mode2: 00 (completed)
Positioning command data: 0 (absolute command)
Operating pattern:0 (Stop and change speed operation)
Position setting within coordinates (0 to 1495999).
So point data are as follows:

N	Speed	Position	Mode1	Mode 2	ABS/INC	Accelerated speed	S curve acceleration	Current control	M output	IP	Dowel
0	249333	0	1	0	0	510	0	0	0	0	0
1	249333	187000	1	0	0	510	0	0	0	0	0
2	249333	374000	1	0	0	510	0	0	0	0	0
3	249333	561000	1	0	0	510	0	0	0	0	0
4	249333	748000	1	0	0	510	0	0	0	0	0
5	249333	935000	1	0	0	510	0	0	0	0	0
6	249333	1122000	1	0	0	510	0	0	0	0	0
7	249333	1309000	1	0	0		0	0	0	0	0

Judgment of shortest way:
When rotating in negative direction and "travel distance > whole coordinatel2 (the figures after the decimal fractions rounded down)," motor rotates in the shortest way.
When rotating in positive direction and "travel distance \geqq whole coordinate - ($1 / 2$ of whole coordinate (the figures after the decimal fractions rounded down)," in actual operation, when moving in positive direction and travel distance \geqq 1531904-(1531904/2), motor also rotates in the shortest way.
Specifically, rotations by moving from P0 to P 4 and from P 4 to P 0 are in positive direction, if position is in P4 with the state 1-pulse moved at L_stp in negative direction, and in that condition if you want to rotate to P 0 , motor rotates in negative direction to the point.
If you want to rotate moving parts more than single turn, set with incremental command. For example, if the position is designated as 1914880 in incremental mode, the moving part stops in the same coordinate after rotating 10 times in positive direction.

Extended function of range signal
When setting "bit5 = 1 of sw1," extended function of range signal activated.
Operational condition: sw1 (bit5=1)
Range signal: zon $\square \mathrm{L}>$ zon $\square \mathrm{H}$ ($\square: 1$ to 8)
"zon $\square \mathrm{L} \leqq$ present position" or "present position < zon $\square \mathrm{H}$ "
In the above condition, the set range signal is turned on.
Set area signal of "0-position ± 100 " in setting of usage example.
Set as follows:
sw1 (bit5=1)
zon1L: 1531804
zon1H: 100
(zon1L > zon1H)
After setting, range signal 1 is turned on at " $1531804 \leqq$ present position" or "present position < 100."

- Explanation of JOG with specific position stop

Outline of operation

The stop position after JOG-feeding operation can be "specific" position designated by point data by enabling JOG with specific position stop function, instead of "unspecified" decelerating stop position.
(1) Turning on the signal +/-JOG starts JOG-feeding operation. During the operation, switching high-velocity JOG/ low-velocity JOG is enabled by turning on or off signal RAP. For the servo amplifiers which can communicate, the JOG-velocity can be changed on a real-time basis by re-writing JOG velocity register.
(2) Turning on signal RUN during JOG-operation switches the mode from JOG-feeding mode to point-positioning mode with motor being rotated, and then performs positioning by referring to target position and acceleration (deceleration) of applicable point data in the information of $\operatorname{IN}(1)$ to $\operatorname{IN}(128)$ at the time RUN turned on.

- Parameters used for this function

(1) Performs setting for infinite motor rotation specifications. (\rightarrow Refer to "Description of infinite motor rotation specification.")
(2) Sets bit9 of Sw2 [Function switch 2] to "1."

41:Sw2 [Function switch 2]
Performs setting of infinite coordinate system and enable-setting of JOG with specific position stop.

High-order

7	6	5	4	3	2	1	0
$0 / 1$	0	$0 / 1$	$0 / 1$	$0 / 1$	$0 / 1$	$0 / 1$	$0 / 1$

- Restrictions on this function

(1) When the function of JOG with specific position stop is enabled, the S-shaped curve acceleration and deceleration time (0C:S_rat) of normal JOG-feeding is not applied.
(2) In specific position stop operation, the velocity setting value set to point data and S-shaped curve acceleration and deceleration time are not used. Set the acceleration value to be set to the point data at $50[\mathrm{Uv} / \mathrm{ms}]$ or over. If you need to set the value at $50[\mathrm{Uv} / \mathrm{ms}]$ or less, please contact us.
(3) To smooth velocity change incline, set position command smoothing time constant (parameter Group1, page00).
(4) Use point data designated by this function in the following moving mode:
Mode 2=00
: Final move
ABS/INC=0
: ABS
With travel to fixed position $=0 \quad$: No travel to fixed position
Speed change=0
: stop

4. Positioning Function

- Operation explanations of by usage examples

Condition: motor resolution: 131072P/R
Setting of parameter GroupD without gearing system
(1) Setting of base units

3B:s_pls $=131072$
3C:u_pls $=360.00$ (Positioning accuracy: 0.01°)
3E:D_pls =2
(After the decimal point of velocity and position data: two places of decimals)
3F:Unit =01
(*The unit indicated in instruction manual and setup software is "mm," however interpret the unit as "deg" for rotary system.)
(2) Setting of stroke and functions

15:+STROKE =360.00
16:A_ofs $=0$
40:Sw1 =0008h (Infinite coordinate enabled)
41:Sw2 $=0203 \mathrm{~h}$ (This function enabled, no detection of \pm OT)
(3) Setting of JOG-velocity and acceleration

27: $\mathrm{H} _$jog $=6000.00 \mathrm{deg} / \mathrm{s} \quad$ (Equivalent to 1000rpm)
28: L_jog =600.00deg/s
(Equivalent to 100rpm)
0B: Accel =300deg/s $/ \mathrm{ms}$
(Velocity increases in increments of 2s up to 1000rpm.)

Setting example of point data

N	Velocity	Position	Mode1	Mode2	ABS/INC	Acceleration	S-shaped curve acceleration appearing in chart	current limit	M-output	IP	Dwell time
0	6000.00	0.00	1	0	0	300	0	0	0	0	0
1	6000.00	45.00	1	0	0	300	0	0	0	0	0
2	6000.00	90.00	1	0	0	300	0	0	0	0	0
3	6000.00	135.00	1	0	0	300	0	0	0	0	0
4	6000.00	180.00	1	0	0	300	0	0	0	0	0
5	6000.00	225.00	1	0	0	300	0	0	0	0	0
6	6000.00	270.00	1	0	0	300	0	0	0	0	0
7	6000.00	315.00	1	0	0	300	0	0	0	0	0

Example of operational sequence (When changing JOG-velocity on a real-time basis)

(The allows " \rightarrow " in the figure above mean input signal and input information into servo amplifier.)
(The allows " \leftarrow " in the figure above mean output signal from servo amplifier.)

- Explanation of sequence -
(1) Servo on to set real time acceleration and deceleration (register address: 0x1002) and real time JOG-velocity (register address: 0x1000) at the values as desired.
(2) Turning on signal +/-JOG starts and accelerates the motor up to the set JOG-velocity.
(3) Rewriting real time JOG-velocity value changes JOG-velocity on a real-time basis.
(When changing JOG-velocity, the JOG acceleration set at the time is used.)
(4) Turning on signal RUN during JOG operation reads out point data set to IN (1) to IN (128) at the time, and starts deceleration at the acceleration (deceleration) parameters set to point data. Signal MOVE is turned on at the same time of specific position stop operation start. At this point, no differences would be made on specific position stop function whether +/-JOG signal turned on in the above (2) is ON or OFF.
(5) PFIN is turned on after positioning to the target point designated by point data is competed.
(6) Controller turns off signal RUN and +/-JOG, after confirming that PFIN is ON. Servo amplifier turns off signal PFIN and MOVE, after detecting that signal RUN and +/-JOG are turned off.

4. Positioning Function

<Register change on a real-time basis>

- Write storage as needed (0×1000 and the subsequent)

The values rewritten by using registers in this range become enable in each updating cycle as needed.

Register address (Hex)	Description	Unit	Setting range	R/W
0x1000	JOG-velocity (high order)	UV	0 to	RMW
	JOG-velocity (low order)		2147483647	
0x1002	JOG acceleration	Uv/ms	1 to 65535	R/W

- JOG-velocity and acceleration at powering-on are preset at "0."
-When setting velocity at "0," motor performs JOG-feeding at the velocity set by general parameters.
- When setting velocity at " 0, ," the value set by general parameters is applied to the acceleration also.
- Acceleration value shall be re-written prior to the setting for velocity, as once velocity is re-written, a command to immediately correspond the set velocity is generated.

5

［Parameters］

－Parameter List 5－1
－Parameter setting value【Group0】 5－6
－Parameter setting value【Group1】 5－7
－Parameter setting value【Group2】 5－9
－Parameter setting value【Group3】 5－10
－Parameter setting value【Group4】 5－12
－Parameter setting value【Group8】 5－13
－Parameter setting value【Group9】 5－15
－Parameter setting value【GroupA】 5－17
－Parameter setting value【GroupB】 5－23
－Parameter setting value【GroupC】 5－24
－Parameter setting value【GroupD】 5－25
－System parameter setting value 5－26

■ General Parameter Group 0 [Auto-tuning setting]

Page	Symbol	Name	Standard Value	Unit	Display Range	Reference page
00	TUNMODE	Tuning mode	$00:$ AutoTun	-	00 to 02	$5-6$
01	ATCHA	Automatic Tuning Characteristic	$00:$ Positioning1	-	00 to 04	$5-6$
02	ATRES	Automatic Tuning Response	5	-	1 to 30	$5-6$
03	ATSAVE	Automatic Tuning, Automatic Parameter Saving	$00:$ Auto_Saving	-	00 to 01	$5-6$
10	ANFILTC	Automatic Notch Filter Tuning, Torque Command	50	$\%$	10 to 100	$5-6$
20	ASUPTC	Automatic Vibration Suppressor Frequency Tuning, Torque Command	25	$\%$	10 to 100	$5-6$
21	ASUPFC	Automatic Vibration Suppressor Frequency Tuning, Friction Compensation Value	5	$\%$	0 to 50	$5-6$

- General Parameter Group 1 [Basic controlling parameter setting]

Page	Symbol	Name	Standard Value	Unit	Display Range	Reference page
00	PCSMT	Position command smoothing time constant	0	ms	0 to 1000	5-7
01	PCFIL	Position command filter	0.0	ms	0.0 to 2000.0	5-7
02	KP1	Position Loop Proportional Gain 1	30	1/s	1 to 3000	5-7
03	TPI1	Position Loop Integral Time Constant 1	1000.0	ms	0.5 to 1000.0	5-7
04	TRCPGN	Higher Tracking Control, Position Compensation Gain	0	\%	0 to 100	5-8
05	FFGN	Feed Forward Gain	0	\%	0 to 100	5-8
08	FFFIL	Feed Forward Filter	2000	Hz	1 to 2000	5-8
10	VCFIL	Velocity Command Filter	2000	Hz	1 to 2000	5-8
12	VDFIL	Velocity Feedback Filter	1500	Hz	1 to 2000	5-8
13	KVP1	Velocity Loop Proportional Gain 1	50	Hz	1 to 2000	5-8
14	TVI1	Velocity Loop Integral Time Constant 1	20.0	ms	0.5 to 1000.0	5-8
15	JRAT1	Load Inertia Ratio (Load Mass Ratio) 1	100	\%	0 to 15000	5-8
16	TRCVGN	Higher Tracking Control, Velocity Compensation Gain	0	\%	0 to 100	5-8
17	AFBK	Acceleration Feedback Gain	0.0	\%	-100.0 to 100.0	5-8
18	AFBFIL	Acceleration Feedback Filter	500	Hz	1 to 2000	5-8
20	TCFIL1	Torque Command Filter 1	600	Hz	1 to 2000	5-8
21	TCFILOR	Torque Command Filter Order	2	Order	1 to 3	5-8

*When you manually tune, set the [Page 16: Higher Tracking Control, Velocity Compensation Gain] at 100% to bring conditions in line with Q-Series standard characteristics.

General Parameter Group 2

[Vibration suppressing control/Notch filter/Disturbance observer setting]

$\left.$| Page | Symbol | | Name | Standard
 Value | Unit | Display Range |
| :---: | :---: | :--- | :---: | :---: | :---: | :---: | | Reference |
| :---: |
| page | \right\rvert\,

- General Parameter Group 3

[Setting for gain switching control / vibration suppressing frequency switching]

| Page | Symbol | | Name | $\begin{array}{c}\text { Standard } \\ \text { Value }\end{array}$ | Unit | Display Range |
| :---: | :---: | :--- | :---: | :---: | :---: | :---: | \(\left.\begin{array}{c}Reference

page\end{array}\right]\)

- General Parameter Group 4 [To set high setting control]

Page	Symbol	Name	Standard Value	Unit	Display Range	Reference page
00	CVFIL	Command Velocity, Low Pass Filter	1000	Hz	1 to 2000	$5-12$
01	CVTH	Command Velocity Threshold	20	$\mathrm{~min}^{-1}$	0 to 65535	$5-12$
02	ACCC0	Acceleration Compensation	0	$\times 50$ Pulse	-9999 to +9999	$5-12$
03	DECC0	Deceleration Compensation	0	$\times 50$ Pulse	-9999 to +9999	$5-12$

- General Parameter Group 8 [Control system setting]

Page	Symbol	Name	Standard Value	Unit	Display Range	Reference page
17	EDGEPOS	Positioning method	00: _Pulse_Interval	-	00 to 01	5-13
18	PDEVMON	Inposition / Position Deviation Monitor	00:_After_Filter	-	00 to 01	5-13
19	CLR	Deviation Clear Selection	00_Type1	-	00 to 01	5-13
24	VCOMP	Preset Velocity Compensation Command	0	min^{-1}	-9999 to +9999	5-13
28	VCLM	Velocity Limit	65535	min^{-1}	1 to 65535	5-13
31	TCOMP1	Preset Torque Compensation Command 1	0	\%	-500 to 500	5-13
32	TCOMP2	Preset Torque Compensation Command 2	0	\%	-500 to 500	5-13
37	SQTCLM	Torque Limit at Sequence Operation	120	\%	10 to 500	5-13
40	NEAR	In-Position Near Range	500	Pulse	1 to 65535	5-14
42	ZV	Speed Zero Range	50	min^{-1}	50 to 500	5-14
43	LOWV	Low Speed Range	50	min^{-1}	0 to 65535	5-14
44	VCOMP	Speed Matching Width	50	min^{-1}	0 to 65535	5-14
45	VA	High Speed Range	1000	min^{-1}	0 to 65535	5-14

The parameter of " 02 VCZDAT" cannot be set from a digital operator.
As for the parameter, setting becomes effective after control power supply re-input.

- General Parameter Group 9 [Function enabling condition setting]

Page	Symbol	Name	Standard Value	Display Range	$\begin{gathered} \text { Reference } \\ \text { page } \\ \hline \end{gathered}$
13	GC1	Gain Switching Function, Select Input 1	00: _Always_Disable	00 to 27	5-15,16
14	GC2	Gain Switching Function, Select Input 2	00: _Always_ Disable	00 to 27	5-15,16
15	SUPFSEL1	Vibration Suppressor Frequency, Select Input 1	00: _Always_Disable	00 to 27	5-15,16
16	SUPFSEL2	Vibration Suppressor Frequency, Select Input 2	00: _Always_Disable	00 to 27	5-15,16
17	PLPCON	Position Loop Proportional Control, Switching Function	01:_Always_Enable	00 to 27	5-15,16
26	VLPCON	Velocity Loop Proportional Control, Switching Function	04: _CONT2_ON	00 to 27	5-15,16
27	VCOMPS	Velocity Compensation Function, Select Input	00: _Always_Disable	00 to 27	5-15,16
30	TCOMPS1	Torque Compensation Function, Select Input 1	00: _Always_ Disable	00 to 27	5-15,16
31	TCOMPS2	Torque Compensation Function, Select Input 2	00: _Always_ Disable	00 to 27	5-15,16
33	OBS	Disturbance Observer	00: Always_Disable	00 to 27	5-15,16
41	DISCHARG	Main Power Discharge Function	01: _Always_ Enable	00 to 27	5-15,16

- General Parameter Group A
[Settings of General purpose input-output/Monitor output selection/Configuration of R-Setup]

Page	Symbol	Name	Standard Value	Display Range	Reference page
00	CONT1	General Purpose Input 1	01:_S-ON	00 to 30	5-17
01	CONT2	General Purpose Input 2	16: _+OT	00 to 30	5-17
02	CONT3	General Purpose Input 3	17: _-OT	00 to 30	5-17
03	CONT4	General Purpose Input 4	12: _EXT-E	00 to 30	5-17
04	OUT1	General output 1 output setting	03: _HBON	00 to 31	5-18
05	OUT2	General output 2 output setting	0B: _A-RDY	00 to 31	5-18
10	DMON	Digital Monitor, Output Signal Selection	00: Always_OFF	00 to 5B	5-19 to 21
11	MON1	Analog Monitor 1, Output Signal Selection	05: VMON_2mV/ min^{-1}	00 to 15	5-19 to 21
12	MON2	Analog Monitor 2, Output Signal Selection	02: TCMON_2V/TR	00 to 15	5-19 to 21
13	MONPOL	Analog monitor output polarity	00: _MON1+_MON2+	00 to 08	5-22
20	COMAXIS	Setup Software, Communication Axis Number	01: _\#1	01 to 0F	5-22
21	COMBAUD	Setup Software, Communication Baud Rate	05: _38400bps	00 to 05	5-22

As for the parameter, setting becomes effective after control power supply re-input.

- General Parameter Group B [Setting related to sequence/alarms]

Page	Symbol	Name	Standard Value	Unit	Display Range	Reference page
00	JOGVC	JOG Velocity Command	50	min^{-1}	0 to 32767	5-23
12	ACTEMR	Emergency Stop Operation	00: __SERVO-BRAKE	-	00 to 01	5-23
13	BONDLY	Delay Time of Engaging Holding Brake (Holding brake holding delay time)	300	ms	0 to 1000	5-23
14	BOFFDLY	Delay Time of Releasing Holding Brake (Holding brake release delay time)	300	ms	0 to 1000	5-23
15	BONBGN	Brake Operation Beginning Time	0	ms	0 to 65535	5-23
16	PFDDLY	Power Failure Detection Delay Time	32	ms	20 to 1000	5-24
20	OFWLV	Following Error Warning Level	65535	$\begin{gathered} \hline \times 1024 \\ \text { pulse } \end{gathered}$	1 to 65535	5-24
22	OLWLV	Overload Warning Level	90	\%	20 to 100	5-24
23	VFBALM	Speed Feedback Error (ALM_C3) Detection	01: _Enabled	-	00 to 01	5-24
24	VCALM	Speed Control Error (ALM_C2) Detection	00: _Disabled	-	00 to 01	5-24
25	POFDLY	POFF detection delay time	32	ms	20 to 1000	5-25

As for the parameter, setting becomes effective after control power supply re-input.

General Parameter Group C [Encoder related setting]

Page	Symbol	Name	Standard Value	Unit	Display Range	Reference page
00	ABS/INCSYS	Position detection system choice	$00: \quad$ _Absolute	--	00 to 01	$5-25$
01	ENFIL	Motor Incremental Encoder, Digital Filter	$01: \quad$ _220nsec	-	00 to 07	$5-25$
02	EX-ENFIL	External Incremental Encoder, Digital Filter	$01: \quad$ _220nsec	-	00 to 07	$5-26$
03	EX-ENPOL	External Encoder Polarity Invert	$00: \quad$ _Type1	-	00 to 07	$5-26$
08	ECLRFUNC	Absolute Encoder Clear Function Selection	$00: \quad$ Status_MultiTurn	-	00 to 01	$5-26$

As for the parameter, setting becomes effective after control power supply re-input.

To the customers using "Absolute encoder for incremental system" with R motor;
Please set the setting of the parameter of the table below value to the servo amplifier.

Group	Page	Symbol	Name	Setting value	Contents
C	00	ABS/INCSYS	Position detection system choice	$00:$ Absolute	Absolute system
C	08	ECLRFUNC	Absolute Encoder Clear Function Selection	$01:$ Status	Clear Only Encoder Status
D	41	Sw2	Funciton switch 2	Bit4 $=1$: AvailableReturn-to-origin function of absolute encoder is necessary to settle coordinate.	

As for the parameter, setting becomes effective after control power supply re-input.
A
To the customers using "Battery backup method absolute encoder" with incremental system with Q motor:
Please set the setting of the parameter of the table below value to the servo amplifier.

Group	Page	Symbol	Name	Setting value	Contents
C	00	ABS/INCSYS	Position detection system choice	$01:$ Incremental	Absolute system
C	08	ECLRFUNC	Absolute Encoder Clear Function Selection	01:_Status	Clear Only Encoder Status
D	41	Sw2	Funciton switch 2	Bit4 $=1:$ Available	Return-to-origin function of absolute encoder is necessary to settle coordinate.

As for the parameter, setting becomes effective after control power supply re-input.

- Encoder specifications

Type	Within 1 rotation	Multiple rotation		
PA035C	131072(17bit)	65536(16bit)	Battery backup method absolute encoder	
PA035S	131072 (17bit)	-	Absolute encoder for incremental system	!

To the customers using "Battery backup method absolute encoder" with incremental system:
See the parameter set values for your servo amplifier in the table below and make sure to use them.
General parameter

Group	Page	Symbol	Name	Setting value	Contents
C	00	ABS/INCSYS	Position detection system choice	01:_Incremental	Absolute system
C	08	ECLRFUNC	Absolute Encoder Clear Function Selection	01:_Status	Clear Encoder Status only
D	41	Sw2	Funciton switch 2	Bit4 = 1: Available	Return-to-origin function of absolute encoder is necessary to settle coordinate.

[Parameter List]

- System parameter [for Setup software - R-Setup]

Page	Name	Display Range	Reference page
00	Main Power, Input Type	2 ways (depending on the hardware type)	5-27
01	Motor Encoder Type	2 ways (depending on the hardware type)	5-27
02	Incremental Encoder, Function Setting	2 ways (depending on the hardware type)	5-27
03	Incremental Encoder, Resolution Setting	500P/R to 65535P/R	5-27
04	Absolute Encoder, Function Setting	4 ways (depending on the hardware type)	5-27
05	Absolute Encoder, Resolution Setting	11ways	5-27
06	Motor Type	-	5-28
08	Control Mode	6 ways	5-28
09	Position Loop Control and Position Loop Encoder Selection	2ways (depending on the hardware type)	5-28
0A	External Encoder, Resolution Setting	500P/R to 65535P/R	5-28
OB	Regenerative Resistor Selection	3ways	5-28

5．Parameters［Parameter setting value【Group0】【Group1】］

－General parameter Group 0 ［Auto－tuning settings］

5．Parameters［Parameter setting value【Group0】【Group1】】

－General parameter Group 1 ［Basic control parameter setting］

Page	Contents			
04	Higher Tracking Control, Position Compensation Gain			GN]
				Parameter to enhance following-up performance. The larger value can make the following-up performance higher. When the value other than 0% is set, position command filter and feed forward gain are automatically set.
	Setting range	Unit	Standard value	
	0 to 100	\%	0	
05	Feed Forward Gain [FFGN]			
				Feed forward compensation gain at the time of position control.
	Setting range	Unit	Standard value	
	0 to 100	\%	0	
08	Feed Forward Filter [FFFIL]			
				Parameter to put primary low pass filter to feed forward command. Sets the cut-off frequency. Filter is disabled with the set value of 2000 Hz .
	Setting range	Unit	Standard value	
	1 to 2000	Hz	2000	
10	Velocity Command Filter [VCFIL]			
				Parameter to put primary low pass filter to velocity command. Sets the cut-off frequency. Filter is disabled with the set value of 2000 Hz .
	Setting range	Unit	Standard value	
	1 to 2000	Hz	2000	
12	Velocity Feedback Filter [VDFIL]			
				Parameter to put primary low pass filter to velocity feedback. Sets the cut-off frequency. Filter is disabled with the set value of 2000 Hz .
	Setting range	Unit	Standard value	
	1 to 2000	Hz	1500	
13	Velocity Loop Proportional Gain 1 [KVP1]			
	Setting range	Unit	Standard valu	Proportional gain of velocity controller. When auto-tuning result saving is executed, the tuning result is automatically saved in this parameter.
	1 to 2000	Hz	50	
14	Velocity Loop Integral Time Constant 1 [TVI1]			
				Integral time constant of velocity controller. When velocity loop proportional control switching function is disabled, this set value is enabled. Integral term (proportional control) is disabled with the set value of 1000.0 ms . When auto-tuning result saving is executed, the tuning result is automatically saved in this parameter.
	Setting range	Unit	Standard value	
	0.5 to 1000.0	ms	20.0	
15				
	Setting range Unit Standard value 0 to 15000 $\%$ 100			Sets inertia moment of the loading device to the motor inertia moment. Set value $=\mathrm{JL} / \mathrm{JM} \times 100 \%$ JL: Load inertia moment JM : Motor inertia moment When auto-tuning result saving is executed, the tuning result is automatically saved in this parameter.
16	Higher Tracking Control, Velocity Compensation Gain			[TRCVGN]
				Parameter to enhance following-up performance. The larger value can make the following-up performance higher. When velocity loop proportional control switching function is used, set this to 0%.
	Setting range	Unit	Standard value	
	0 to 100	\%	0	
17	Acceleration Feedback Gain [AFBK]			
				Compensation function to make the velocity loop stable Multiply this gain with the detected acceleration to compensate torque command. Setting unit is 0.1%.
	Setting range	Unit	Standard value	
	-100.0 to 100.0	\%	0.0	
18	Acceleration Feedback Filter [AFBFIL]			
				Parameter to put primary low pass filter to acceleration feedback compensation. Sets the cut-off frequency. Filter is disabled with the set value of 2000 Hz .
	Setting range	Unit	Standard value	
	1 to 2000	Hz	500	
20	Torque Command Filter 1 [TCFIL1]			
				Parameter to put low pass filter to torque command. Sets the cut-off frequency. When auto-tuning result saving is executed, the tuning result is automatically saved in this parameter.
	Setting range	Unit	Standard value	
	1 to 2000	Hz	600	
21	Torque Command Filter Order [TCFILOR]			
				Parameter to set ordinal number of torque command filter.
	Setting range	Unit	Standard value	
	1 to 3	Order	2	

5. Parameters

- General parameter

Group 2 [vibration suppressing control / notch filter / disturbance observer settings]

5．Parameters［Parameter setting value【Group2】【Group3】］

－General parameter

Group 3 ［Gain switching control／vibration suppressing frequency switching settings］

5. Parameters

5．Parameters

 ［Parameter setting value【Group3】【Group4】】| Page | Contents | | | |
| :---: | :---: | :---: | :---: | :---: |
| | Vibration Suppressor Frequency 2 ［SUPFRQ2］ | | | |
| 40 | Setting range | $\begin{gathered} \hline \text { Unit } \\ \hline \mathrm{Hz} \\ \hline \end{gathered}$ | $\begin{gathered} \hline \text { Standard value } \\ \hline 500 \\ \hline \end{gathered}$ | Parameter to set the frequency of vibration suppressing vibration．
 In the servo amplifier，the vibration suppressing frequency from 5 to 99 Hz is treated by 1 Hz unit，and from 100 to 500 Hz is by 10 Hz unit．Operations do not change even if parameters set by the unit lower than these units． Vibration suppressing control is disabled when the set value is 500 Hz ．
 Change this while the motor stops． |
| 41 | Vibration Suppres
 ｜Setting range
 5 to 500 | requ Unit Hz | ［SUPFRQ3］ Standard value 500 | Parameter to set the frequency of vibration suppressing vibration．
 In the servo amplifier，the vibration suppressing frequency from 5 to 99 Hz is treated by 1 H unit，and from 100 to 500 Hz is by 10 Hz unit．Operations do not change even if parameters set by the unit lower than these units． Vibration suppressing control is disabled when the set value is 500 Hz ．
 Change this while the motor stops． |
| | Vibration Suppressor Frequency 4 ［SUPFRQ4］ | | | |
| 42 | Setting range
 5 to 500 | $\begin{aligned} & \hline \text { Unit } \\ & \hline \mathrm{Hz} \\ & \hline \end{aligned}$ | $\begin{gathered} \hline \text { Standard value } \\ \hline 500 \\ \hline \end{gathered}$ | Parameter to set the frequency of vibration suppressing vibration．
 In the servo amplifier，the vibration suppressing frequency from 5 to 99 Hz is treated by 1 H unit，and from 100 to 500 Hz is by 10 Hz unit．Operations do not change even if parameters set by the unit lower than these units． Vibration suppressing control is disabled when the set value is 500 Hz ．
 Change this while the motor stops． |

－General parameter Group 4 ［High setting control settings］

5. Parameters

- General parameter Group 8 [Control system settings]

5. Parameters

Page	Contents			
	In-Position Near Range [NEAR]			
40	Setting range	Unit	Standard value	Parameter for setting the output range of near range signal (near in-position complete). Near range signal is output when the deviation counter is lower than this set value. Encoder pulse is standard irrespective of electronic gear and command multiplication functions.
	Speed Zero Range [ZV]			
42	Setting range	Unit ${ }_{\text {min }}{ }^{-1}$	Standard value 50	Set value for detecting zero-speed status (motor stop). When the motor speed becomes lower than this value, zero-speed status is detected.
43	Low Speed Range [LOWV]			
	Setting range	$\frac{\text { Unit }}{\mathrm{min}^{-1}}$	$\begin{gathered} \hline \text { Standard value } \\ \hline 50 \end{gathered}$	Parameter for setting low-speed output range. When the speed is lower than this value, low-speed range is output.
	Speed Matching Width [VCMP]			
44	Setting range	Unit ${ }_{\text {min }}{ }^{-1}$	Standard value 50	Parameter for setting the range of velocity matching output. Velocity matching is output when the speed deviation (difference between speed command and actual speed) is within the setting range.
	High Speed Range [VA]			
45	Setting range	Unit ${ }_{\text {min }}$	$\frac{\text { Standard value }}{1000}$	Parameter for setting the value for speed attainment output. When the speed exceeds this set value, velocity attainment is output. If the motor speed exceeds the selected value during torque control operations, and when the control switching function is enabled, the torque command is always set to 0 . Fixed speed cannot be controlled. Avoid continuous usage in this manner.

5. Parameters

[Parameter setting value [Group9]]

- General parameter Group 9 [Condition settings for enabling functions] Input signals and conditions to enable the functions of each page are set.

Selection contents to be set are on the next page.

Page		Contents
13	Gain Switching Function, Select Input 1 [GC1]	
	Setting range	Standard value
	00 to 27	00: _Always_Disable
14	Gain Switching Function, Select Input 2 [GC2]	
	Setting range	Standard value
	00 to 27	00: _Always_Disable
15	Vibration Suppressor Frequency, Select Input 1 [SUPFSEL1]	
	Setting range	Standard value
	00 to 27	00: _Always_Disable
16	Vibration Suppressor Frequency, Select Input 2 [SUPFSEL2]	
	Setting range	Standard value
	00 to 27	00: _Always_Disable
17	Position Loop Proportional Control, Switching Function [PLPCON]	
	Setting range	Standard value
	00 to 27	01: _Always_Enable
26	Velocity Loop Proportional Control, Switching Function [VLPCON]	
	Setting range	Standard value
	00 to 27	00:_CONT2_ON

5. Parameters

- General parameter Group 9 List of selection contents

When functions are to be always enabled or disabled.	
Selection	Contents
00: _Always_Disable	Always disable the function.
01: _Always_Enable	Always enable the function.
When functions are to be set with the conditions of servo motor rotation speed.	
Selection	Contents
12: _LOWV_IN	ble the function during low speed status (speed is less than LOWV).
13: _LOWV_OUT	ble the function while low speed status is not kept.
14: _VA_IN	ble the function during high speed status (speed is more than VA).
15: _VA_OUT	ble the function while high speed status is not kept.
16: _VCMP_IN	ble the function during speed matching status (velocity deviation < VCMP).
17: _VCMP_OUT	able the function while speed matching status is not kept.
18: _ZV_IN	ble the function during zero speed status (speed is less than ZV).
19: _ZV_OUT	able the function while zero speed status is not kept.
When functions are to be set with the conditions of positioning signals.	
Selection	Contents
20: _NEAR_IN	able the function during NEAR status (position deviation < NEAR).
21:_NEAR_OUT	ble the function while NEAR status is not kept.
1A: _INP_IN	ble the function during In-Position status (position deviation < INP).
1B: _INP_OUT	ble the function while In-Position status is not kept.
26: _INPZ_IN	able the function during PCMD=0 and In-position Status.
27:_INPZ_OUT	able the function during PCMD=0 or In-position Status.
When functions are to be set with the conditions of torque / speed limit	
Selection	Contents
1C: _TLC_IN	ble the function during torque limiting.
1D: _TLC_OUT	ble the function while torque limiting is not performed.
1E: _VLC_IN	ble the function during velocity limiting.
1F: _VLC_OUT	ble the function while velocity limiting is not performed.
When functions are to be set with the servo motor rotation direction and stop status.	
Selection	Contents
22: _VMON_>++LV	ble the function when Moving Direction is Positive (VMON > LOWV).
23: _VMON_<=++LV	ble the function when Moving Direction is not Positive (VMON <= LOWV).
24: _VMON_<-LV	able the function when Moving Direction is Negative (VMON < LOWV).
25: _VMON_>=--LV	ble the function when Moving Direction is not Negative (VMON >= LOWV).

- General parameter Group A

[Settings of General purpose input-output/Monitor output selection/Configuration of R-Setup]

5. Parameters

5. Parameters

- List of selection contents for digital monitor output

Selection		Contents
00H	Always_OFF	The output is always OFF
01H	Always_ON	The output is always ON
02H	S-RDY_ON	The output is ON during Servo Ready complete.
03H	S-RDY_OFF	The output is OFF during Servo Ready complete.
04H	P-ON_ON	The output is ON while the main power supply is turned on.
05H	P-ON_OFF	The output is OFF while the main power supply is turned on.
06H	A-RDY_ON	The output is ON during the main power supply ON permission.
07H	A-RDY_OFF	The output is OFF during the main power supply ON permission.
08H	S-ON_ON	The output is ON during motor excitation.
09H	S-ON_OFF	The output is OFF during motor excitation.
OAH	MBR-ON_ON	The output is ON while holding brake excitation signal outputs.
OBH	MBR-ON_OFF	The output is OFF while holding brake excitation signal outputs.
OCH	TLC_ON	The output is ON during torque limiting.
ODH	TLC_OFF	The output is OFF during torque limiting.
OEH	VLC_ON	The output is ON during velocity limiting.
OFH	VLC_OFF	The output is OFF during velocity limiting.
10H	LOWV_ON	The output is ON during low speed status (speed is less than LOWV).
11H	LOWV_OFF	The output is OFF during low speed status (speed is less than LOWV).
12H	VA_ON	The output is ON during high speed status (speed is more than VA).
13H	VA_OFF	The output is OFF during high speed status (speed is more than VA).
14H	VCMP_ON	The output is ON during speed matching status (velocity deviation < VCMP).
15H	VCMP_OFF	The output is OFF during speed matching status (velocity deviation < VCMP).
16H	ZV_ON	The output is ON during zero speed status (speed is less than ZV).
17H	ZV_OFF	The output is OFF during zero speed status (speed is less than ZV).
18 H	INP_ON	The output is ON during In-Position status (position deviation < INP).
19H	INP_OFF	The output is OFF during In-Position status (position deviation < INP).
1AH	NEAR_ON	The output is ON during In-Position Near status (position deviation < NEAR).
1BH	NEAR_OFF	The output is OFF during In-Position Near status (position deviation < NEAR).
1-H	CMD-ACK_ON	The output is ON while command can be accepted.
1DH	CMD-ACK_OFF	The output is OFF while command can be accepted.
1EH	GC-ACK_ON	The output is ON during gain switching.
1 FH	GC-ACK_OFF	The output is OFF during gain switching.
20H	PCON-ACK_ON	The output is ON during velocity loop proportional control switching.
21H	PCON-ACK_OFF	The output is OFF during velocity loop proportional control switching.
26 H	F-OT_ON	The output is ON during positive over-travel status.
27H	F-OT_OFF	The output is OFF during positive over-travel status.
28 H	R-OT_ON	The output is ON during negative over-travel status
29H	R-OT_OFF	The output is OFF during negative over-travel status
2AH	WNG-OFW_ON	The output is ON during following warning status (position deviation > OFWLV).
2BH	WNG-OFW_OFF	The output is OFF during following warning status (position deviation > OFWLV).
2 CH	WNG-OLW_ON	The output is ON during over-load warning status
2DH	WNG-OLW OFF	The output is OFF during over-load warning status
2EH	WNG-ROLW_ON	The output is ON during regenerative over-load warning status.
2FH	WNG-ROLW_OFF	The output is OFF during regenerative over-load warning status.
30H	WNG-BAT_ON	The output is ON during battery warning.
31H	WNG-BAT_OFF	The output is OFF during battery warning.
38 H	ALM_ON	The output is ON during alarm status.
39H	ALM_OFF	The output is OFF during alarm status.
4AH	CHARGE_ON	The output is ON while main power supply (smooth capacitor) is charging.
4BH	CHARGE_OFF	The output is OFF while main power supply (smooth capacitor) is charging.
4CH	DB_OFF	The output is OFF during dynamic braking.
4DH	DB_ON	The output is ON during dynamic braking.

Continued on the following page.

Selection		Contents
58 H	S-RDY2_ON	The output terminal is ON during Servo Ready complete.
59H	S-RDY2_OFF	The output terminal is OFF during Servo Ready complete.
60H	NCRDY_ON	The output is ON while motor can be excited in S-ON input state.
61H	HBON_ON	The output is ON while holding brake excitation signal outputs.
62H	ERR_ON	The output is ON during error status.
63H	EXT_ON	The output is ON while external operation input is effective.
64H	MOVE_ON	The output is ON while operation signal is inputted.
65 H	PFIN_ON	The output is ON while positioning is completed and operation signal is ON.
66H	INPS_ON	The output is ON during the inside of allowable deviation (inside of In-position).
67H	ZFIN_ON	The output is ON after homing is completed, without alarm status.
68H	OUT1_ON	The output is ON while output OUT (1) is ON.
69 H	OUT2_ON	The output is ON while output OUT (2) is ON.
6 AH	OUT3_ON	The output is ON while output OUT (3) is ON.
6BH	OUT4_ON	The output is ON while output OUT (4) is ON.
6CH	OUT5_ON	The output is ON while output OUT (5) is ON.
6DH	OUT6_ON	The output is ON while output OUT (6) is ON.
6EH	OUT7_ON	The output is ON while output OUT (7) is ON.
6FH	OUT8 ON	The output is ON while output OUT (8) is ON.
70 H	EXT-E_ON	The output is ON while EXT-E input is ON.
71H	RUN_ON	The output is ON while RUN input is ON.
72H	ZRT_ON	The output is ON whle ZRT input is ON.
73H	+JOG_ON	The output is ON while +JOG input is ON.
74H	-JOG_ON	The output is ON while -JOG input is ON.
75H	RAP/OVRD_ON	The output is ON while RAP/OVRID input is ON.
76H	ARST_ON	The output is ON while ARST input is ON.
77H	CACL_ON	The output is ON while CACL input is ON.
78H	S-ON_ON	The output is ON while S-ON input is ON.
79H	SEL1_ON	The output is ON while SEL1 input is ON.
7AH	SEL2_ON	The output is ON while SEL2 input is ON.
7BH	SEL3_ON	The output is ON while SEL3 input is ON.
7CH	+1STEP_ON	The output is ON while +1STEP input is ON.
7DH	-1STEP_ON	The output is ON while -1STEP input is ON.
7EH	I_RUN_ON	The output is ON while I_RUN input is ON.
7FH	MFIN_ON	The output is ON while MFIN input is ON.
80H	RESERVE1_ON	(Reserved)
81H	RESERVE2_ON	(Reserved)
82H	RESERVE3_ON	(Reserved)
83H	RESERVE4_ON	(Reserved)
84H	SDN_ON	The output is ON while SDN input is ON.
85H	+OT_ON	The output is ON while +OT input is ON.
86H	-OT_ON	The output is ON while -OT input is ON.
87H	E_STR_ON	The output is ON while E_STR input is ON.

*Selections include internal status output.

5. Parameters

- General parameter Group B [sequence/alarm related settings]

5．Parameters

－General parameter Group C［ Encoder related settings］

5. Parameters

 [Parameter setting value【Groupc]/[GroupD】

- General parameter Group D

Please refer to Chapter 4 positioning function for GroupD.
For details on "Communication setup of Servo Amplifier", see Chapter 3-23 to 25 ("Page" 50 through 57)

5. Parameters

- System parameter

5. Parameters

The set value is enabled after control power is turned ON again.
Note) In case of digital operator

Note) In case of digital operator
Page Description 06 Servo amplifier information This is for maker maintenance. In the digital operator, motor codes of the selected servo motor are displayed. To change the combined motor, change the motor parameter setting at "The set up software." 07 Combined motor code Combined motor cannot be changed by the digital operator.

No Text on This Page.

[Operations]

- Procedure prior to operation 6-1
- Confirmation of Installation and Wiring 6-3Confirmation \& Change of servo amplifier specification . 6-4- Confirmation \& Change of servo motor encoder specification $\cdots 6$ 6-5
- Confirmation \& Change of servo motor model number \cdots 6-6
- Confirmation of I/O signal and Unit operations 6-7
- Operation sequence 6-8
- Error \& Sequence 6-11
- Explanation of state display mode 6-12

- After wiring, test run will begin. Please do not connect the shaft of the servo motor with the machine.

- Confirm installation and wiring of the servo amplifier and servo motor.
[Confirmation of installation and wiring]

Procedure	Item	Contents
1	Installation	Referring to [Chapter 2. Installation], install the servo amplifier and the servo motor. Do not connect the shaft of the servo motor into the machine to keep the status of no load.
2	Wiring and connection	Referring to [Chapter 3. Wiring], perform wirings for the power supply, the servo motor, and the upper device. However, please do not connect CN1 with the servo amplifier after wiring has been done.
3	Power supply turning on	Turn on the power supply. R-SETUP can be connected; regardless of an alarm that caused by setting conditions.

- Confirm the specifications and the combination of the servo amplifier servo motor encoders.
[Confirmation and Change of specification]

Procedure	Item	Contents
4	Confirmation of servo amplifier specification servo amplifier. • Amplifier Capacity - Control power supply input voltage - Control power supply input type	

The movement of the servo amplifier servo motor is confirmed by driving JOG.
[I/O signal confirmation]

Procedure	Item	
9	Confirmation of input signal	Confirm the I/O signal status using the monitoring function inside the servo amplifier. Please confirm that there are protecting functions such as emergency stop, over travel, and alarm reset.
10	The servo on signal is input.	Please confirm the digital operator on the servo amplifier front is displaying a shape of "8".
11	JOG driving	Do not connect the shaft of the servo motor into the machine to keep the status of no load, and perform JOG operation. Confirm that the servo motor rotates forwards and backwards.
12	Power supply shut off	After the servo on signal is turned off, turn the power supply off.

- Connect the servo motor shaft with the machine and confirm the operation.
[Confirmation of machine's operation function]

Procedure	Item	Contents
13	Parameter set	The parameter of [Group D] calculated in Chapter 4 is set in R-SETUP.
14	Test operation	Please use \pm manual operation (JOG) and ± 1 step sending, and confirm the move direction and a travel. Confirm that external abnormalities, \pm software limit, and the \pm over travel operate normally.

Input the command of the operation pattern to be used and operate a machine.
[Operation]

Procedure	Item	Contents
15	Operation	At the time of shipment, real time auto-tuning (automatic adjustment for servo gain and filter) has been set. There is no need for manual tuning unless operations and characteristics are appropriate.

More detailed procedure is described in the following pages.

- [Procedure 1 to Procedure 3] Confirmation of installation and wiring

Proce dure	Item	Contents
1	Installation Install the servo amplifier and servo motor referring to [Chapter 2, Installation]. Do not connect the servo motor shaft to the machine to keep the status of no load.	
2	Wiring • Connecting Wire the power supply, servo motor and upper device referring to [Chapter 3, Wiring]. Confirm the correct wiring. If the servo motor does not rotate or is in a state of runaway / overload in test run, wrong wiring may be the cause of it. Do not connect CN1 to servo amplifier after wiring.	Down load the setup software-R-Setup.
3	Turning on the power supply Turn on the power supply. R-SETUP can be connected; regardless of an alarm that caused by setting conditions.	

6. Operations [Confirmation and change of servo amplifier specifications]

[Procedure 4 to Procedure 8] Confirming specifications and combination of servo amplifier • servo motor • encoder

6. Operations [Confirmation \& Change of servo motor encoder specification]

6. Operations

Proce dure	Item and Contents	
6	Use the AC servo system supporting tool R-Setup to confirm and set the model type of combined servo motor. For how to use [the setup software R-Setup], refer to [R-SETUP Instruction Manual].	
	Item	
	Model motor	Ex: Q2AA07030D(0000-0064)
	Shows the combined motor model number.	\uparrow Model number of combined motor is displayed.
		Combined motor can be changed at Motor parameter setting.

Proce dure	Item and Contents	
7	Turning ON the power again Turn OFF the power of servo amplifier and turn it ON again. Turning OFF the power makes the parameter re-written. Without turning OFF the power, the parameter cannot be changed. Make sure to turn OFF \rightarrow turn ON again.	

Proce dure	Item and Contents 8Reconfirming the specifications Reconfirm the specifications and combination of the changed servo amplifier, servo motor encoder and servo motor. Many of the troubles at test run, such as servo motor not operating, etc., are caused by mistakes in parameter setting.

6. Operations [Confirmation of I/O signal and Unit operations]

- [Procedure 9 to 12] Connection of upper device, CN1, CN3,CN4 and JOG operation.

Procedure	Item	Contents
9	Input signal check	Check the status of input signal by the monitor function of R-SETUP. Please check the function of external defect, alarm reset, \pm manual operation (JOG),manual high velocity(RAP)and Servo-On signal specifically.

Procedure	Item	
10	Input Servo-On signal	Input Servo-On signal and apply excitation to the servo motor. Please confirm that the digital operation display on the front face of the servo-amplifier shows " 8 ".

Procedure	Item	
11	JOG Operation J	Input \pm manual operation (JOG) and operate JOG with no-load. Please confirm the servo motor rotates in CW/ CCW.

Procedure	Item	
12	Power-Off	Please turn off the power supply after turning off servo signal.

[Procedure 13,14] Confirm the operation connecting servo motor shaft with the machine

Procedure	Item	Contents
13	Parameter setting	Set the parameter of [GroupD] being calculated in chapter 4 by R-SETUP.
14	Trial run	Connect the servo motor shaft with the machine
		Please confirm the travel direction and travel distance by \pm manual operation (JOG) and ± 1 step travel. Also please check external defect and \pm software limitation and \pm over travel are operated on normal.

[Procedure 15] Input the orders of operation pattern to use and operate the machine.

Procedure	Item	Contents
15	Operation	Set the point data and operate in/output signal to move the point. Real-time auto-tuning (auto-tuning of servo-gain and filter) is set on Ex-factory. Manual tuning is unnecessary unless there is any problem on the operation and the property.

6. Operations

- Operation sequence from power turn ON to power shut OFF at the standard shipment setting The frequency of the power ON/OFF of the servo amplifier should be less than 5 times/hour and less than 30 times/day.
Please give 10 minutes or more to the interval of power ON/OFF.
- [Power ON \rightarrow Servo ON]

Notes: What has an abbreviated name in () in the following figures exists as external I/O and an input. The thing without the notation is an internal signal.

- Alarm sequence

When an alarm occurs, the servo motor is stopped by dynamic brake or servo brake. The brake to be used is determined depending on alarms. Refer to [Chapter 8, Maintenance] [Alarm list].

- Stop by dynamic brake at alarm

- Stop by servo brake at alarm

Install a protective circuit referring to [Chapter 3, Wiring] [Wiring example of high voltage circuit, protective circuit]. The above sequence is the one when protective circuit is installed.

Sequence at alarm reset

Inputting alarm-reset signal from general-purpose input can reset alarms.

(4)

Some alarms cannot be reset unless the power is reset (control power is turned OFF and ON again) or encoder is cleared. Refer to [Chapter 8, Maintenance] [Alarm list].

- Sequence when power is turned OFF during operation (During servo-on)

6. Operations

[Error sequence]

Error, Sequence

Although motor excitation state is maintained in an error condition, traveling order is not received until error is reset.
However, software limit is an exception. (\rightarrow refer to following.)
An error code output (OUT 8 to 1) outputs from a general-purpose output simultaneously with an error output (Err). (See Chapter 4, when based on an output selection setup)
\rightarrow Please cope with it by troubleshooting at the time of Chapter 8 error generating.

- Software limit, Sequence

The command for forward move in +SOT zone (and backward move in -SOT zone) are not acceptable. In addition, movement in the escape direction is based on manual movement (JOG).

6. Operations

[Explanation of state display mode]

- Explanation in status display mode
- In status display mode, the state of servo amplifier is displayed, as shown in the following table.

State of servo amplifier	Display
Control-power-source establishment state Control power source (r, t) is established and an amplifier lady (RDY) is "ON" state.	
State during main power supply establishment Main power supply (R, S, T) is established, and operation preparation-completion signal is "OFF" state.	
State during main power supply establishment Main power supply (R, S, T) is established, and operation preparation-completion signal is "ON" state.	
Servo-on state "The character of eight" is drawn and it rotates.	
ERR State Shown as a dot flashing.	
Alarm display When alarm activated, 2-digit alarm code of the activated alarm is displayed in time-division method alternately. (e.g.: When amplifier overheat occurred (alarm code:51H), the display is as follows: "5" \rightarrow " 1 " \rightarrow "not lighted" \rightarrow " 5 "	
Please perform a corrective action according to the contents of "Chapter 8 Maintenance" at the time of alarm generated.	

No Text on This Page.

[Adjustment • Functions]

- Functions of Group8 …..7-7

Functions of Group9 ...7-12

- Functions of GroupB $\cdots \cdots \cdots, 7-14$
- Functions of GroupC…...................................7-17
- Description of monitor $\cdot \cdots 7-19$

Description of operation tracing function $\cdots \cdots \cdots \cdots \cdots 7$-23

7．Adjustment•Functions

－Structure of tuning 《General parameter Group 0》

At＂parameter Group 0 ＂，tuning structure of the R series servo amplifier is as follows．
《General parameter Group 0 》

－Tuning Mode［page 00］
00：＿AutoTun auto－tuning
The servo amplifier estimates the load inertia moment ratio of the machine and equipment at real time and automatically tunes the servo gain so that it will become the best one．The parameters for the servo amplifier to automatically tune vary depending on the selected auto－tuning characteristics．
※The servo amplifier estimates the load inertia moment ratio at the time of acceleration／deceleration．Therefore， for operations with only excessively low acceleration／deceleration time constant or with only low torque with low velocity，this mode cannot be used．Also，operations with large disturbance torque or with large mechanical clearance，this mode cannot be used，either．
01：＿AutoTun＿JRAT－Fix Usage at Auto－tuning［JRAT manual setting］．
01：＿AutoTun＿JRAT－Fix Automatic Tuning（JRAT Fixed）
Based on the load inertia moment ratio（JRAT1）which was set，the servo amplifier automatically tunes and makes the servo gain the best one．The parameters for the servo amplifier to automatically tune vary depending on the selected auto－tuning characteristics．

02：＿ManualTun Manual Tuning

This is used in order for adjusting the servo gain to the machine and equipment to ensure the maximum response，and when characteristics in auto－tuning are insufficient．
－Automatic Tuning Characteristic［page 01］
Characteristics adjusted to machines and equipment are selected when Automatic Tuning and
Automatic Tuning（JRAT Fixed）are used．
When Manual Tuning is used，this does not function．
－Automatic Tuning Response［page 02］
Set this when Automatic Tuning and Automatic Tuning（JRAT Fixed）are used．The larger set value makes the response higher．Set this suitable for the equipment rigidity．
When Manual Tuning is used，this does not function．
－Automatic Tuning，Automatic Parameter Saving［load inertia moment ratio］［page 03］
The＂load inertia moment ratio＂obtained from auto－tuning is automatically saved in parameter JRAT1 at every 2 hours．The set value is enabled when Automatic Tuning is used．
When Automatic Tuning（JRAT Fixed）and Manual Tuning are used，this does not function．

7. Adjustment \cdot Functions

Tuning method selecting procedure

7. Adjustment \cdot Functions

Monitoring servo gain adjustment parameter
The following parameters can be monitored when auto-tuning is used.

- R-SETUP

Refer to "R-SETUP Instruction Manual" for the operation above.

- Using auto-tuning result at manual tuning.

At manual tuning, auto-tuning result is saved as a batch or by selection using R-SETUP, and can be used as controlling parameter.

For how to operate these, refer to " R-SETUP Instruction Manual".

Note) In the setting of TUNMODE=02:_ManualTun, parameter setting value is used in the control loop. When auto-tuning result saving is executed, the gain parameter being used will change (except during gain switch over). Therefore, the motor operation may change suddenly.

Execute auto-tuning result saving while servo OFF or motor stoppage.

7. Adjustment•Functions

- Servo system structure

Servo system consists of 3 subsystems; the position loop, the velocity loop and the current loop. High response is required for the internal loops. If this structure is compromised, it could result in instability, low response, vibration or oscillation.

The response of the current loop is ensured internally in the servo amplifier, so user is not required to make additional adjustments.

- Servo adjustment parameters

Position Command Filter [PCFIL]

When the position command resolution is low, set this parameter to suppress the ripples contained in the position command. The larger value of this will make the ripple suppressing effect greater, however, delay will be greater.
※ When high tracking control position compensation gain is set to other than 0%, this parameter is automatically set.

Position Loop Proportional Gain [KP]

Set this equivalent to $\mathrm{KP}_{[1 / \mathrm{s}]}=\mathrm{KVP}_{[\mathrm{Hz}]} / 4 \cdot 2 \pi$.

Higher Tracking Control, Position Compensation Gain [TRCPGN]

When tracking effect needs to be improved under high resolution of position command, increase this parameter after adjustment of high tracking control velocity compensation gain.

Feed Forward Gain [FFGN]

Tracking effect of position command can be improved by increasing this gain.
Under positioning control, set this to approximately 30 to 40\%.
※When high tracking control position compensation gain is set to other than 0%, this parameter is automatically set.

Feed Forward Filter [FFFIL]

When position command resolution is low, set this parameter to suppress ripples.

Velocity Command Filter [VCFIL]

Under velocity control, when there is a big noise component contained in velocity command, set this parameter to suppress the noise.

Velocity Loop Proportional Gain [KVP]

Set this as high as possible within such a stable operation range as not to cause vibration or oscillation of the machine. If JRAT is accurately set, the set value of KVP becomes the velocity loop response zone.

7. Adjustment \cdot Functions

Velocity Loop Integral Time Constant [TVI]

Set this equivalent to $\mathrm{TVI}_{[\mathrm{ms}]}=1000 /\left(\mathrm{KVP}_{[\mathrm{Hz}]}\right)$.
Load Inertia Ratio [JRAT]
Set the value calculated as shown below.

$$
\text { JRAT }=\frac{\text { Motor axis converted load inertia moment }}{} \begin{array}{cl}
\text { Motor inertia moment } & \lfloor\mathrm{JM} 】
\end{array}
$$

Higher Tracking Control, Velocity Compensation Gain [TRCVGN]
Tracking effect can be improved by increasing compensation gain.
Adjust this so as to shorten the positioning setting time.
※Set the value of JRAT properly to use this function.

Torque Command Filter 1 [TCFIL]

When rigidity of the mechanical device is high, set this value high and the velocity loop proportional gain can be set to high. When rigidity of the mechanical device is low, set this value low and resonance in high frequency zone and abnormal sound can be suppressed. For normal usage, set this below 1200 Hz .

Adjustment method of vibration suppressing control
Set vibration-suppressing frequency to suppress the low frequency vibration at the tip or the body of the machine. Vibration-suppressing frequency is obtained by executing auto-tuning of vibration-suppressing frequency or by calculating vibration frequency of vibrating point at positioning and its reciprocal. When vibration does not stop with the vibration-suppressing control, there is a possibility that the gain for control system may be too high. In this case, lower the control system gain. Also, when used together with high tracking control velocity compensation gain, vibration-suppressing effect may be greater.
※Vibration suppressing control function can be used together with auto-tuning.

- Adjustment method of notch filter

Set the torque command notch filter to suppress high frequency resonance resulted from coupling and rigidity of the device mechanism. Notch filter center frequency can be obtained by executing auto-notch filter tuning or by system analysis. ※Torque command notch filter function can be used together with auto-tuning. ※When resonance of the device mechanism does not stop even after this parameter is set, here may be two or more resonance points. In this case, insert notch filters B, C and D to suppress each of them. If not yet suppressed, there is a possibility that auto-tuning response or control gain is too high. If so, lower the auto-tuning response or control gain.

Adjustment method of disturbance observer

Set the disturbance observer to suppress the disturbance applied to the motor. At first, use the low frequency observer characteristics. If not suppressed by that, use that for medium frequency. Gradually increase the observer compensation gain. The higher the observer compensation gain becomes, the more the disturbance suppressing characteristics will be improved.
However, if it is excessively high, oscillation may result. Use this within the range not causing oscillation.
※Disturbance observer cannot be used with auto-tuning.

7. Adjustment•Functions

Adjustment method of gain switch over
When tracking effect is insufficient even if basic parameters of high tracking control position compensation gain and high tracking control velocity compensation gain are set, set the gain switch over so that tracking effect can be improved.
(Example) Gain is increased near positioning compete.

The value of gain 2 shall be set to 1.2 times the value of gain 1 .
※ Gain switch over function cannot be used with auto-tuning.
Adjustment method of high setting control
When tracking effect is insufficient even after gain switch over, set the high setting control parameter and in-position setting characteristics can be improved. When position command resolution is low, set the value of command velocity calculation low pass filter low. Set the acceleration compensation so that the position deviation near acceleration conclusion becomes small. Set the deceleration compensation so that the position deviation near deceleration conclusion (positioning complete) becomes small.
※ This function cannot be used together with auto-tuning.

How to make R series control characteristics equal to Q series standard characteristics Parameter change as follows can make the status equal to Q series standard characteristics.

Group	Page		Before change	After change
0	00	Tuning Mode	$00:$ AutoTun	$02:$ ManualTun
1	16	Higher Tracking Control, Velocity Compensation Gain	0%	100%

- Functions of Group 8
[Group 8] 17
Positioning Method [EDGEPOS]
The location of positioning stop is selected; between encoder pulses or at edge.

Selected value	Contents
00:_Pulse_Interval	Specify Pulse Interval
$01:$ Pulse_Edge	Specify Pulse Edge

[Group 8] 18

Inposition / Position Deviation Monitor [PDEVMON]
Positioning complete signal when the position control mode is used, and position command used for outputting position deviation monitor can be selected from before or after the position command filter passes.

Selected value	Contents
00:_After_Filter	Compare "Position Command Value After Filter Passes by" with "Feedback Value"
01:_Before_Filter	Compare "Position Command Value Before Filter Passes by" with "Feedback Value"

[Group 8] 19

Deviation Clear Selection [CLR]
This function is used for changing the location deviation counter in the servo amplifier from the host unit to zero.

	Selection	Description
OH	When SERVO-OFF/ Clear Deviation : Deviation Clear Input/ Level Detection	- Deviation is always cleared when servo is off. Logic can be changed - Deviation is always cleared when deviation clear input is ON. Logic cannot be changed
1H	When SERVO-OFF/ Clear Deviation : Deviation Clear Input/ Edge Detection	- Deviation is always cleared when servo is off. Logic can be changed - Deviation is cleared in the edge when deviation clear input becomes OFF/ON. CLR signal Logic can be changed

[Group 8] 28
Velocity Limit [VCLM]
A host limit value can be locked in with the velocity limit command.
This value cannot be set to exceed the velocity capabilities of the adjoining motor.

Parameter Group8Page28	VCLM : Velocity Limit	$1-65535 \mathrm{~min}^{-1}$

[Group 8] 37
Torque Limit at Sequence Operation [SQTCLM]
During the sequence operation the output torque is limited. Limiting the output torque protects the unit mechanism.

The torque limits during sequence operation support the following sequence operations:

- Securing brake standby time
- Servo brake operation

Sequence operation torque limit value setting

Parameter Group 8 Page37	$\begin{array}{l}\text { SQTCLM : Torque Limit at } \\ \text { Operation }\end{array}$

If this value is set higher than the maximum output torque (TP) of the servo motor, it will be limited by (TP).

7. Adjustment• Functions [Functions of Group 8][Near range]

[Group 8] 40
In-Position Near Range [NEAR]
O utputs signal indicating proximity to position completion.
This is used together with positioning complete signal (INP) and near range of positioning complete is output.

Parameter Group8Page40	NEAR : In-Position Near Range	1 to 65535 Pulse

Selection		Description	
1A	NEAR_ON	The output is ON during In-Position Near status (position deviation < NEAR).	
1B	NEAR_OFF	The output is OFF during In-Position Near status (position deviation < NEAR).	

Determine the logical status of the NEAR signal output, and to which output terminal to assign the positioning completion signal output. The assignment of the output terminal is the same location as the positioning completion signals (above).

If set to a value greater than the positioning completion range settings, the host unit receives the NEAR signal before receiving the positioning completion signal (INP), and transition to the positioning completion operations is enabled.

7.Adjustment•Functions

[Gruoup 8] 43 to 45

Low Speed Range [LOWV] Speed Matching Width [VCMP] High Speed Range [VA]
This parameter affects settings for the speed output range. The signal can be output from general output (OUT1 to OUT8) and used as a valid condition for all functions.
This parameter affects settings for the speed output range, and can be used as a valid condition for all functions.

Selection		Description
10	LOWV_ON	The output is ON during low speed status (speed is less than LOWV).
11	LOWV_OFF	The output is OFF during low speed status (speed is less than LOWV).
12	VA_ON	The output is ON during high speed status (speed is more than VA).
13	VA_OFF	The output is OFF during high speed status (speed is more than VA).
14	VCMP_ON	The output is ON during speed matching status (speed deviation < VCMP).
15	VCMP_OFF	The output is OFF during speed matching status (speed deviation < VCMP).

Low speed range: Low speed signal is sent if speed goes below the set value.

Speed Matching Width: Speed coincidence range signal is given if speed deviation reaches the set range.

Parameter Group8 Page44	VCMP : Speed Matching Width	$0-65535 \mathrm{~min}^{-1}$

Speed transport settings: Speed transport signal is given if speed exceeds the set value.

> | Parameter Group1 Page08 | VA : High Speed Range | $0-65535 \mathrm{~min}^{-1}$ |
| :--- | :--- | :--- |

7.Adjustment•Functions

Various functions can be made valid without output signals taken into the host unit when this is used together with Group9 function enabling conditions (input signals).

Selection		
12	LOWV_IN	Enable the function during low speed status (speed is less than LOWV).
13	LOWV_OUT	Enable the function while low speed status is not kept.
14	VA_IN	Enable the function during high speed status (speed is more than VA).
15	VA_OUT	Enable the function while high speed status is not kept.
16	VCMP_IN	Enable the function during speed matching status (speed deviation < VCMP).
17	VCMP_OUT	Enable the function while speed matching status is not kept.

Low speed status [LOWV_IN]: Function is enabled during low speed status (speed below LOWV set value).
Low speed status [LOWV_OUT]: Function is enabled outside of low speed status (speed below LOWV set value).

Speed coincidence status [VCMP_IN]: Function is enabled during speed coincidence status (speed deviation below VCMP set value).
Speed coincidence status [VCMP_OUT]: Function is enabled outside of speed coincidence status (speed deviation below VCMP set value).

Speed transport status [VA_IN]: Function is enabled during speed transport status (speed above VA set value).
Speed transport status [VA_OUT]: Function is enabled outside of speed transport status (speed above VA set value).

7.Adjustment • Functions [Functions of Group 9][Gain switch over]

Functions of Group 9

[Group9] 13,14
Gain Switching Function, Select Input 1 [GC1] Gain Switching Function, Select Input 2 [GC2]
4 types of gains can be switched and used.

Conditions enabling gain switch over are allocated. When the signal of GC1 and GC2 combination is valid, the set value of corresponding GAIN becomes enabled.

Parameter Group9 Page13	GC1: Gain Switching Function, Select Input 1
Parameter Group9 Page14	GC2: Gain Switching Function, Select Input 2

GC1: Gain Switching Function, Select Input 1	Disabled	Enabled	Disabled	Enabled					
GC2 : Gain Switching Function, Select Input 2	Disabled	Disabled	Enabled	Enabled					
\downarrow						\downarrow	\downarrow	\downarrow	\downarrow
Gain to be enabled	GAIN 1	GAIN 2	GAIN 3	GAIN4					

[Group 9] 15,16

Vibration Suppressor Frequency, Select Input 1 [SUPFSEL1]
Vibration Suppressor Frequency, Select Input 2 [SUPFSEL2]
4 types of vibration suppressing frequency can be switched and used.

Conditions for enabling vibration suppressing frequency selection input are allocated. When the signal of SUPFSEL1 and SUPFSEL2 combination is valid, the set value of corresponding vibration frequency becomes enabled.

Parameter Group9 Page15	SUPFSEL1: Vibration Suppressor Frequency, Select Input 1
Parameter Group9 Page16	SUPFSEL2 : Vibration Suppressor Frequency, Select Input 2

SUPFSEL1 : Vibration Suppressor Frequency, Select Input 1	Disabled	Enabled	Disabled	Enabled					
SUPFSEL2 : Vibration Suppressor Frequency, Select Input 2	Disabled	Disabled	Enabled	Enabled					
\downarrow Vibration suppressing frequency to be enabled						Vibration Suppressor Frequency 1 Group2 Page 00	Vibration Suppressor Frequency 2 Group 3 Page 40	Vibration Suppressor Frequency 3 Group 3 Page 41	Vibration Suppressor Frequency 4 Group 3 Page 42

7.Adjustment • Functions [Functions of Group 9][Gain switch over]

[Group 9] 17
Position Loop Proportional Control, Switching Function [PLPCON]
Switching between position loop PI control $\longleftrightarrow P$ control is possible. Switching is possible when position loop proportional control switchover function (PPCON) is enabled.

Conditions for enabling position loop proportional control switchover function are allocated. Switches to proportional control when the signal of PPCON is valid.

Parameter Group9 Page17	PLPCON : Position Loop Proportional Control, Switching Function

PI control(proportional•integral control) \cdots. Position loop proportional gain(KP)•Integral time constant(TPI)
P control (Proportional control)Position loop proportional gain(KP)

* Position loop integral time constant (TPI)is 1000.0 ms at standard setting, therefore, integral function is invalid.

[Group 9] 26

Velocity Loop Proportional Control, Switching Function [VLPCON]
Velocity loop PI control / P control can be used alternatively. Activate switching by enabling the velocity loop comparison control switching function (PCON)

The conditions for enabling the velocity loop comparison control switching function are assigned. Change the comparison control when the PCON signal is valid.

Parameter Group9 Page26
VLPCON : Velocity Loop Proportional Control, Switching Function

PI control (comparison / integral control): Velocity loop comparison gain (KVP) / Velocity loop reset time constant (TVI)
P control (Comparison control): Velocity loop comparison gain (KVP)
*When set to comparison control, servo gain is reduced and the servo system is made stable.

* When the velocity loop reset time constant (TVI) is set to 1000.0 ms , it is not necessary to use this function, since the reset time constant in use is invalid (Comparison control)

[Group 9$] 41$

Main Power Discharge Function [DISCHARG]

This function forcefully discharges voltage charged in the condenser for the main circuit power supply in the servo amplifier when power supply to the main circuit is cut. However, discharge is not possible when the main circuit power supply is ON.

The conditions for enabling forced discharge function are assigned. Forced discharge is possible when the DISCHARGE signal is valid.

Parameter Group9 Page41	DISCHARGE : Main Power Discharge Function

7.Adjustment • Functions [Functions of Group BIIHolding brake holding delay time]

Functions of Group B

[GroupB] 10
Dynamic Brake Action Selection [DBOPE]
Conditions for stop at servo OFF can be selected from Servo brake/dynamic brake/free run.
Conditions after servo motor stop can be selected from dynamic brake/free run.

Parameter GroupB Page10	DBOPE: Dynamic Brake Action Selection

Selected value	
00:_Free_Free	When Servo-OFF, Free-Run is operated. After stops, Motor-Free is operated.
01:_Free_DB	When Servo-OFF, Free-Run is operated. After stops, Dynamic-Braking is performed.
02:_DB_Free	When S-OFF, Dynamic-Braking is performed. After stops, Motor-Free is operated.
03:_DB__DB	When S-OFF, Dynamic-Braking is performed. After stops, Dynamic-Braking.
04:_SB_Free	When Servo-OFF, Servo-Braking is performed. After stops, Motor-Free is operated.
05:_SB_DB	When Servo-OFF, Servo-Braking is performed. After stops, Dynamic-Braking.

[GroupB] 12

Forced stop operation [ACTEMR]

When forced stop is executed by power shut off, etc. while servo motor is operating (servo motor is not stopped), conditions for servo motor stop can be selected from servo brake/dynamic brake.

> Parameter GroupB Page12

ACTEMR : Emergency Stop
Operation

Selected value	Contents
00:_SERVO-BRAKE	When EMR is input, motor is stopped by servo brake operation.
01:_DINAMIC-BRAKE	When EMR is input, motor is stopped by dynamic brake operation.

[GroupB] 13

Delay Time of Engaging Holding Brake [BONDLY]
This function is enabled during servo brake operation at servo OFF. It is disabled for dynamic brake and free-run.

- The setting increment is 4 msec . If the setting is 0 msec , the command is disabled (forced zero) for 4 msec after SON.

7.Adjustment - Functions 〔Functions of Group BIIHolding brake holding delay time]

[GroupB] 14
Delay Time of Releasing Holding Brake [BOFFDLY]

- Set the delay time for the securing brake release

Parameter GroupB Page14	BOFFDLY : Delay Time of Releasing Holding Brake	0 to 1000ms

- The setting increment is 4 msec . If the setting is 0 msec , the command is disabled (forced zero) for 4 msec after SON.

[GroupB] 15

Brake Operation Beginning Time [BONBGN]

If the motor does not stop within the time frame set for the brake operation start (BONBGN) when the servo is turned OFF, the securing brake and the dynamic brake force the motor to stop. The function can be disabled by setting the value to " 0 " ms . The setting increment is 4 msec ; therefore, set the value to 4 msec or higher.

Parameter GroupB Page15	BONBGN : Brake Operation Beginning Time	0 to 65535ms

* The term "motor does not stop" (above) means that the motor velocity does not fall below the zero velocity (ZV) range.
* The stop sequence is different depending on the condition settings of the emergency stop operation.
* When the brake operation start time (BONBGN) passes, the servo motor will be forced to stop by both the dynamic brake and the securing brake, which can cause damage to the securing brake. Therefore, use this function only after considering the specifications and the sequence of the unit.

7.Adjustment•Functions

[Functions of Group B][Following Error Warning - Deviation counter overflow• Overload warning]

[GroupB] 16

Power Failure Detection Delay Time [PFDDLY]

This function can set a delay period, after power off of the control power supply, for detecting problems in the control power supply. Detection of unexpected power failure is diminished when this value is increased. However, even if this value is increased and problem detection is delayed, when the power supply to the internal logic circuit is exhausted, routine operations at the time of control power supply cut off / restart will continue.

* When energy to the main circuit power supply is insufficient, problems like a reduction in main circuit power supply, etc. are also detected.
* The actual anomaly detection delay time compared to the selected value can vary between -12 ms and +6 ms .

| [GroupB] 20 | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Following Error Warning Level [OFWLV] | | | | | |
| This function gives a warning before reaching excessive deviation alarm status. | | | | | |
| Set the deviation excessive warning value. | | | | | |
| Parameter GroupB Page20 | OFWLV : Following Error Warning Level | $1-65535$ | \times | 1024 | pulse |

[GroupB] 22

Overload Warning Level [OLWLV]

This function will send a warning before reaching overload alarm status. Set the ratio corresponding to the overload alarm value to 100%. When set to 100%, the overload warning and overload alarm are given simultaneously.

Set the overload warning level.

Parameter GroupB Page22	OLWLV : Overload Warning Level	$20-100 \%$

* The overload detection process is assumed to be 75% of the rated load at the time of starting the control power supply (hot start). Therefore, if the overload warning level is set below 75%, an overload warning is given after starting the control power supply.

7.Adjustment • Functions [Functions of Group c|iDigital filter: Extermal encoder polarity]

Functions of Group C

[GroupC] 01-02
Motor Incremental Encoder, Digital Filter [ENFIL]
External Incremental Encoder, Digital Filter [EX-ENFIL]
You can set the digital filer value of the incremental pulse for the selected incremental encoder. When noise is superimposed on the incremental encoder, the pulse below the set value is removed as noise. Set this value by considering the frequency of pulses from the selected encoder and the maximum number of rotations of the servo motor. If the input value is greater than the encoder frequency during the peak rotation of the servo motor, the encoder pulse is removed and the servo motor will stop.

The motor encoder and external encoder can be set separately.
Selection for motor incremental encoder digital filter

Parameter GroupC Page01	ENFIL : Motor Incremental Encoder, Digital Filter
Parameter GroupC Page02	EX-ENFIL : External Incremental Encoder, Digital Filter

Selected value	
$00: _110 \mathrm{nsec}$	Minimum Pulse Width=110nsec (Minimum Pulse Phase Difference $=$ 37.5nsec)
01:_220nsec	Minimum Pulse Width=220nsec
02:_440nsec	Minimum Pulse Width=440nsec
$03: _880 \mathrm{nsec}$	Minimum Pulse Width=880nsec
04:_75nsec	Minimum Pulse Width=75nsec (Minimum Pulse Phase Difference $=37.5 \mathrm{nsec}$)
$05: _150 \mathrm{nsec}$	Minimum Pulse Width=150nsec
06:_300nsec	Minimum Pulse Width=300nsec
07:_600nsec	Minimum Pulse Width=600nsec

[GroupC] 03

External Encoder Polarity Invert [EX-ENPOL]

You can select external encoder pulse polarity.

Parameter GroupC Page03	EX-ENPOL: External Encoder Polarity Invert

Selected value	Contents		
00:_Type1	EX-Z / Not Reversed	EX-B/Not Reversed	EX-A/ Not Reversed
01:_Type2	EX-Z / Not Reversed	EX-B/Not Reversed	EX-A/ Reversed
02:_Type3	EX-Z / Not Reversed	EX-B/ Reversed	EX-A/ Not Reversed
03:_Type4	EX-Z / Not Reversed	EX-B/ Reversed	EX-A/ Reversed
04:_Type5	EX-Z/Reversed	EX-B/Not Reversed	EX-A/ Not Reversed
05:_Type6	EX-Z/Reversed	EX-B / Not Reversed	EX-A/ Reversed
06:_Type7	EX-Z / Reversed	EX-B/ Reversed	EX-A/ Not Reversed
07:_Type8	EX-Z/Reversed	EX-B/Reversed	EX-A/ Reversed

This setting is disabled in case of full closed control and when motor encoder is absolute encoder.
(To be set at Type 1.)

7.Adjustment•Functions

[GroupC] 08

Abusolute Encoder Clear Function Selection [ECLRFUNC]

Select the conditions for enabling absolute encoder clear.
Parameter Group9 Page03 \quad ECLR : Abusolute Encoder Clear Function

When using a battery backup method absolute encoder and absolute encoder without battery, you can select the contents to be cleared.

Clear "Warning + multiple rotation data"
Clear only "Warning"

Parameter GroupC Page08	ECLRFUNC : Abusolute Encoder Clear Function Selection

Selected value	Contents
00:_Status_MultiTurn	Clear Encoder Status (Alarm and Warning) and Multi Turn Data
01:_Status	Clear Only Encoder Status

* These conditions are applicable only to the battery backup method absolute encoder and absolute encoder without battery.
* Do not input this while the servo motor is rotating. Confirm that the servo motor stops before inputting this.

7.Adjustment•Functions

[Monitor][Analog monitor]

Description of monitor

All signals and internal status of the servo amplifier can be monitored. There are 3 kinds of monitors.

1. Analog monitor $\left\{\begin{array}{l}\text { Monitor box and dedicated monitor cable are needed. Refer to "Materials; Option, Monitor box." }\end{array}\right.$
2. Digital monitor Refer to "Chapter 1, Prior to Use, Servo Amplifier Part Names 1-8" for locations for connectors to be connected.
3. Monitor in display (Setup software-R-SETUP, Digital Operator)

Analog monitor (2 channels)

[Group A] 11 to 13

Analog Monitor 1, Output Signal Selection [MON1]
Analog Monitor 2, Output Signal Selection [MON2]
Analog Monitor, Output Polarity [MONPOL]
Analog monitor for use is selected.
Parameter GroupA Page11 MON1 : Analog Monitor 1, Output Signal Selection Parameter GroupA Page12 MON2 : Analog Monitor 2, Output Signal Selection

Selected value	Contents
00	Reserved
01:_TMON_2V/TR	Torque Monitor 2V/rated torque (thrust)
02: _TCMON 2V/TR	Torque Command Monitor 2V/ rated torque (thrust)
03: _VMON_0.2mV/ min^{-1}	Velocity Monitor $\quad 0.2 \mathrm{mV} / \mathrm{min}^{-1}$
04: _VMON_1mV/ min^{-1}	Velocity Monitor $1 \mathrm{mV} / \mathrm{min}^{-1}$
05: _VMON_2mV/ min^{-1}	Velocity Monitor $2 \mathrm{mV} / \mathrm{min}^{-1}$
06: _VMON_3mV/ min^{-1}	Velocity Monitor $3 \mathrm{mV} / \mathrm{min}^{-1}$
07: _VCMON_0.2mV/ min^{-1}	Velocity Command Monitor $\quad 0.2 \mathrm{mV} / \mathrm{min}^{-1}$
08: _VCMON_1mV/ min^{-1}	Velocity Command Monitor $1 \mathrm{mV} / \mathrm{min}^{-1}$
09: _VCMON_2mV/ min^{-1}	Velocity Command Monitor $2 \mathrm{mV} / \mathrm{min}^{-1}$
OA: _VCMON_3mV/ min^{-1}	Velocity Command Monitor $3 \mathrm{mV} / \mathrm{min}^{-1}$
OB: _PMON_0.1mV/P	Position Deviation Monitor $0.1 \mathrm{mV} /$ Pulse
0C: _PMON_1mV/P	Position Deviation Monitor $1 \mathrm{mV} /$ Pulse
0D: _PMON_10mV/P	Position Deviation Monitor $10 \mathrm{mV} /$ Pulse
0E: _PMON 20mV/P	Position Deviation Monitor $20 \mathrm{mV} /$ Pulse
0F: _PMON_50mV/P	Position Deviation Monitor 50mV/Pulse
10: _FMON_2mV/kP/s	Position Command Pulse Input Frequency Monitor $2 \mathrm{mV} / \mathrm{kPulse} / \mathrm{s}$
11:_FMON_10mV/kP/s	Position Command Pulse Input Frequency Monitor 10mV/kPulse/s
12: _TLMON_EST_2V/TR	Load Torque Monitor (Estimete Value) 2V/ rated torque (thrust)
13: _Sine-U	U phase electricity angle Sin 8 V peak
14: _VBUS_1V/DC100V	Main Power Circuit D.C. Voltage 1V/DC100V
15: _VBUS_1V/DC10V	Main Power Circuit D.C. Voltage 1V/DC10V

Select this when polarity is to be changed.

Parameter GroupA Page12	MONPOL: Analog Monitor, Output Polarity
Selected value	
00: _MON1+_MON2+	MON1 : Positive voltage output in forward rotation; output pos and neg voltage. MON2 : Positive voltage output in forward rotation; output pos and neg voltage.
01: _MON1-_MON2+	MON1 : Negative voltage output in forward rotation; output pos and neg voltage. MON2 : Positive voltage output in forward rotation; output pos and neg voltage.
02: _MON1+_MON2-	MON1 : Positive voltage output in forward rotation; output pos and neg voltage. MON2 : Negative voltage output in forward rotation; output pos and neg voltage.
03: _MON1-_MON2-	MON1 : Negative voltage output in forward rotation; output pos and neg voltage. MON2 : Negative voltage output in forward rotation; output pos and neg voltage.
04: _MON1ABS_MON2+	MON1 : Positive voltage output together in forward and reverse rotation MON2 : Positive voltage output in forward rotation; output pos and neg voltage.
05: _MON1ABS_MON2-	MON1 : Positive voltage output together in forward and reverse rotation MON2 : Negative voltage output in forward rotation; output pos and neg voltage.
06: _MON1+_MON2ABS	MON1 : Positive voltage output in forward rotation; output pos and neg voltage. MON2 : Positive voltage output together in forward and reverse rotation
$07:$ MON1-_MON2ABS	MON1 : Negative voltage output in forward rotation; output pos and neg voltage. MON2 : Positive voltage output together in forward and reverse rotation
08: _MON1ABS_MON2ABS	MON1 : Positive voltage output together in forward and reverse rotation MON2 : Positive voltage output together in forward and reverse rotation

7.Adjustment - Functions [Monitor][Digital monitor][Displayed monitor list]

- Digital monitor (1 channel)
[Group A] 10
Digital Monitor 1, Output Signal Selection [DMON]
Digital monitor for use is selected.
Parameter GroupA Page10
DMON: Digital Monitor 1, Output Signal Selection
For selected values, refer to "Chapter 5, Parameter [Parameter setting value【GroupA】] general output OUT1general output OUT8, and setting selection list of digital monitor output.
- List of monitors in display
[Monitor] 00 to 2C

Page	Name	Contents	Unit
00	Servo Amplifier Status	Displays the statuses of main circuit power being supplied, operation ready and servo ON. Note2	---
01	Warning status 1	Displays warning status. \quad Note2	---
02	Warning status 2	Displays warning status. Note2	---
03	General input/output monitor	Displays general input and output (hardware-signal) status Note2	---
05	Velocity Monitor	Displays motor rotation velocity.	min^{-1}
06	Velocity Command Monitor	Displays velocity command value.	min^{-1}
07	Torque Monitor	Displays motor output torque.	\%
08	Torque Command Monitor	Displays torque command value.	\%
09	Position Deviation Monitor	Displays position deviation values.	Pulse
OA	Actual Position Monitor	Displays current position compared with original position when the control power is turned ON. This is a free run counter. Therefore, when current position exceeds the displayed range, the display is maximum value of reversed polarity.	Pulse
OB	External Actual Position Monitor		
OC	Command Position Monitor		
OE	Position Command Pulse Input Frequency Monitor	Displays command pulse frequency being input.	k Pulse/s
OF	U-Phase Electric Angle Monitor	Displays electric angle of U phase. Except for encoder error, this is always displayed.	deg
10	Absolute Encoder PS Data (High)	Displays absolute encoder position data PS.	x2^32 P
11	Absolute Encoder PS Data (Low)	Displays absolute encoder position data PS.	Pulse
12	Regenerative Resistor Operation Percentage	Displays regeneration resistance operation status.	\%
13	Motor Operating Rate Monitor	Displays exact values, however, it may take several hours for the value to become stable depending on the operation pattern.	\%
14	Predicted Motor Operating Rate Monitor	Displays estimated value of servo motor usage ratio, which is estimated from a short period of operation. In an application where the same operation pattern repeats in a short period of time, the usage ratio can be confirmed fast.	\%
15	Load Inertia (Mass) Ratio Monitor	Values can be confirmed when gain switch over and auto-tuning functions are used.	\%
16	Position Loop Proportional Gain Monitor		1/s
17	Position Loop Integral Time Constant Monitor	Values can be confirmed when gain switch over function is used.	ms
18	Velocity Loop Proprotional Gain Monitor	Values can be confirmed when gain switch over and auto-tuning function are used.	Hz
19	Velocity Loop Integral Time Constant Monitor		ms
1A	Torque Command Filter Monitor		Hz
1B	Incremental Encoder Signal Monitor	Incremental signal of CN2 is displayed. Note2	-----
1C	Load Torque Monitor (Estimate Value)	Load torque is displayed.	\%
1D	Powre Monitor	Main circuit DC voltage is displayed.	V
1E	Servo Amplifier Operation Time	Counted while control power supply is ON. The time is displayed value $\times 2$ hours.	$\times 2$ hour
20	Execution Point Number	Displays a point number in execution or a point number that is completed execution	--
21	Actual Location (User Coordinate)	Displays actual position in user coordinate by values with a decimal point.	-
22	Command Position (User Coordinate)	Displays command position in user coordinate by values with a decimal point.	-
23	Position Deviation (User Coordinate)	Displays position deviation in user coordinate by values with a decimal point.	--
24	Input (Group 1) Monitor	Displays status of Input (Group 1). Note2	--
25	Input (Group 2) Monitor	Displays status of Input (Group 2) . Note2	--
26	Input (Group 3) Monitor	Displays status of Input (Group 3) . Note2	--
27	Input (Point Number) Monitor	Displays status of Input (Point No.) . Note2	--
28	Output (Group 1) Monitor	Displays status of Output (Group 1) . Note2	--
29	Output (Group 2) Monitor	Displays status of Output (Group 2) . Note2	--
2A	Output (Group 3) Monitor	Displays status of Output (Group 3) . Note2	--
2B	Output (Group 4) Monitor	Displays status of Output (Group 4) . Note2	--
2C	Test Monitor	(Manufacturer use only) Note3)	--

Note 1) Actual monitored values are displayed in user coordinate by values with a decimal point that is previously set by D_dpo.
Note 2) Refer to the following page and after for description of servo amplifier status and each bit allocation.
Note 3) A monitor for the manufacturer use only
For displays of monitor by Setup Software, refer to "Setup Software R-SETUP".

7.Adjustment-Functions

[Monitor][Servo amplifier status][Warning status 1 and 2]

- Description of [Status of Servo Amplifier] Monitor

Contents of status of Servo Amplifier are shown in the table below.

Status Code	Monitor display	Contents of Servo Amplifier status
00 H	Reset	Reset state
01 H	Run	Moving point
02 H	Feed	Moving state
03 H	Feed_Hold	Motion temporary under suspension
04 H	Jog	Move by JOG Feeding
05 H	1step	Step movement - Move at regular interval -
06 H	I_Run	Interrupt Move
07 H	Home	Home position setting
08 H	Z-Return	Homing
09 H	Z-Finish	Homing complete
OA H	Waiting	Servo On: - Waiting command input
OB H	Cancel	Cancel movement
OC H	Normal-End	Movement complete - Wait command input, Servo OFF
OD H	Servo-OFF	Servo OFF state
OE H	M_STR	Wait MFIN
OF H	Dwell	Dwell time - time in a cycle at which no motion occurs -
10 H	Z-Slow_down	Homing SDN in progress
16 H	ERR_Soft+OT	ERR: + Software position limit
17 H	ERR_Soft-OT	ERR: - Software position limit
18 H	ERR_Point_D	ERR: Point data setting error
19 H	ERR_Loop	ERR: Point Loop frequency setting error
1 AH	ERR_Nesting	ERR: Point Loop nesting error
1B H	ERR_Z_Return	ERR: Homing motion error

*If display time of amplifer status is too short, the status may not be displayed on the monitor.

- Description of monitor "general input and output"

Displayed contents of general input and ouput signal monitor are as follows:

	Bit allocation							
Name	7	6	5	4	3	2	1	0
General input and output monitor	-	-	General output 2 [OUT2]	General output 1 [OUT1]	General input 4 [IN4]	General input 3 [IN3]	$\begin{gathered} \text { General input } \\ 2 \\ {[\text { [N2] }} \\ \hline \end{gathered}$	General input 1 [IN1]

- Description of [Warning Status 1-2] Monitor

Contents of Status of Warning Status $1 \cdot 2$ are shown in the table below.

		Correspondence table of Bits								
Status	7	6	5	4	3	2	1	0		
Warning Status 1	Following Emor Waming	-	Speed limit operation running	Torque limit operation running	Regenerativ e overload Warning	Overload Warning	-	Amplifier Overheating Warning		
Warning Status 2	-	Battery voltage reduction Warning	-	-	-	-	-	Main circuit powerbing charged		

7.Adjustment•Functions

[Monitor][Servo amplifier status] [Warning status 1 and 2]

- Description of monitor "Incremental encoder signal"

Displayed contents of incremental encoder signal monitor are as follows:

	Bit allocation							
Name	7	6	5	4	3	2	0	
Incremental encoder signal monitor	-	External encoder Z-phase signal	External encoder B-phase signal	External encoder A-phase signal	-	Servo motor encoder Z-phase signal	Servo motor encoder B-phase signal	Servo motor encoder A-phase signal

- Description of monitor "input/output (for positioning function) signal"

Displayed contents of input/output (for positioning function) signal monitor are as follows:

	Bit allocation							
Name	7	6	5	4	3	2	1	0
Input group 1 Moniotr	CACL	ARST	RAP	-JOG	+JOG	ZRT	RUN	S-ON
Input group 2 Monitor	M_FIN	IRUN	-1step	+1step	OVRD_3	OVRD_2	OVRD_1	OVRD_0
Input group 3 Monitor	E_STR	-OT	+OT	SDN	HOME	$\begin{aligned} & \text { BRK } \\ & \text { FREE } \end{aligned}$	EXT_E	$\begin{aligned} & \text { BAT } \\ & \text { CLR } \end{aligned}$
Input point NO. Monitor	$\begin{gathered} \mathbb{N} \\ (128) \end{gathered}$	$\begin{gathered} \hline \mathrm{IN} \\ (64) \\ \hline \end{gathered}$	$\begin{gathered} \hline \mathbb{N} \\ (32) \end{gathered}$	$\begin{gathered} \hline \text { IN } \\ (16) \\ \hline \end{gathered}$	$\begin{aligned} & \text { IN } \\ & \text { (8) } \end{aligned}$	$\begin{aligned} & \text { IN } \\ & \text { (4) } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathrm{IN} \\ & (2) \\ & \hline \end{aligned}$	$\begin{aligned} & \text { IN } \\ & \text { (1) } \end{aligned}$
Output group 1 Monitor	$\begin{aligned} & \text { WAR } \\ & \text { (ZFIN) } \end{aligned}$	INPS	PFIN	MOVE	EXT	ERR	HBON	NCRDY
Output group 2 Monitor	C_RDY	$\begin{gathered} \hline \text { T_LIM } \\ \text { FLG } \end{gathered}$	$\begin{aligned} & \mathrm{IN} \\ & \text { FEED } \end{aligned}$	$\begin{aligned} & \text { IN } \\ & \text { STOP } \end{aligned}$	SVACT	SVRDY	A_RDY	ALM
Output group 3 Monitor	MSTR	-	-	--	MOUT_3	MOUT_2	MOUT_1	MOUT_0
Output group 4 Monitor	ZOUT_8	ZOUT_7	ZOUT_6	ZOUT_5	ZOUT_4	ZOUT_3	ZOUT_2	ZOUT_1

* For the details of each information flag (abbreviation), refer to coil input/output specification
(after page 3-41).

7.Adjustment•Functions

- Description of operation tracing function

Various signals and internal status of servo amplifier can be displayed and saved (stored) by analog signals (up to 4 items from the table below are available) and digital signal (up to 4 items from the table below are available).
Refer to the following table for the signals selectable.

- Contents of analog signal selection

Signal name	Data length	Data range	Unit
VMON: Velocity monitor	2 Bytes	-32768 to 32767	min-1
VCMON: Velocity command monitor	2 Bytes	-32768 to 32767	min-1
TMON: Torque monitor	2 Bytes	-32768 to 32767	\%
TCMON: Torque command monitor	2 Bytes	-32768 to 32767	\%
PMON: Position deviation monitor	4 Bytes	-2147483648 to 2147483647	Pulse
APMON: Actual position monitor (motor encoder)	4 Bytes	-2147483648 to 2147483647	Pulse
CPMON: Command position monitor	4 Bytes	-2147483648 to 2147483647	Pulse
FMON: Position command pulse monitor (position command pulse input frequency)	2 Bytes	-32768 to 32767	Pulse
Sine U	2 Bytes	-32768 to 32767	--
PS-H: Absolute encoder PS (high-order)	4 Bytes	0 to 4294967295	x2^32 P
PS-L: Absolute encoder PS (low-order)	4 Bytes	0 to 4294967295	Pulse
RegR: Regenerative resistance operational rate	2 Bytes	0 to 65535	0.01\%
OPRT: Motor usage rate monitor	2 Bytes	0 to 65535	\%
JRAT_MON: Control loop parameter_load inertia moment ratio monitor	2 Bytes	0 to 65535	\%
TLMON_EST: Load torque (estimate value)	2 Bytes	-32768 to 32767	\%
PMON_S: Position deviation monitor (2-Byte)	2 Bytes	-32768 to 32767	Pulse
AD_REAL: Actual position (user coordinate)	4 Bytes	-2147483648 to 2147483647	U
AD_MACH: Command position (user coordinate)	4 Bytes	-2147483648 to 2147483647	U
PAERR: Position deviation (user coordinate)	4 Bytes	-2147483648 to 2147483647	U
IN_POINT: Input (point number) monitor	2 Bytes	0 to 255	--
EXE_POINT : Execution point number	2 Bytes	0 to 255	--

7.Adjustment•Functions

- Contents of digital signal selection

Signal name	
RUN : Starting-up	"High" while signal RUN is ON.
+JOG : +Manual feeding	"High" while signal +JOG is ON.
-JOG : -Manual feeding	"High" while signal -JOG is ON.
RAP/OVRD : Manual high-velocity/ override	"High" while signal RAP/OVRD is ON.
+1STEP: +1 step-feeding	"High" while signal +1STEP is ON.
-1STEP : -1 step-feeding	"High" while signal -1STEP is ON.
I_RUN : Interrupt start-up	"High" while signal I_RUN is ON.
MFIN : Handshake signal	"High" while signal MFIN is ON.
ZRT : Homing signal	"High" while signal ZRT is ON.
SDN : Slow-down signal	"High" while signal SDN is ON.
OVRD_0 : Override-0 signal	"High" while signal OVRD_0 is ON.
OVRD_1: Override-1 signal	"High" while signal OVRD_1 is ON.
OVRD_2 : Override-2 signal	"High" while signal OVRD_2 is ON.
OVRD_3: Override-3 signal	"High" while signal OVRD_3 is ON.
OUT1 : General output1	"High" while signal OUT1 is ON.
OUT2 : General output2	"High" while signal OUT2 is ON.
INPS: In-position	"High" while signal INPS is ON.
NEAR: Near-range	"High" while signal NEAR is ON.
VCMP: Actual velocity corresponds to the commanded value.	"High" while signal VCMP is ON.
TLC: Torque (force)-limited operation	"High" while signal TLC is ON.
PFIN : Positioning completed	"High" while signal PFIN is ON.
S-ON: Motor excited	"High" while signal S-ON is ON.
S-RDY: Operation-ready	"High" while signal S-RDY is ON.
MOVE : Operating	"High" while signal MOVE is ON.
PCON-ACK: Proportionally-controlling velocity loop	"High" while signal PCON-ACK is ON.
EGR-ACK: Switching electronic gears	"High" while signal EGR-ACK is ON.
WNG-OFW: Excessive deviation warning activated	"High" while signal WNG-OFW is ON.
WNG-OLW: Excessive load warning activated	"High" while signal WNG-OLW is ON.
ALM: Alarm being activated	"High" while signal ALM is ON.
IN1 : General input 1	"High" while signal IN1 is ON.
IN2 : General input 1	"High" while signal IN2 is ON.
IN3 : General input 3	"High" while signal IN3 is ON.
IN4 : General input 4	"High" while signal IN4 is ON.

No Text on This Page.

[Maintenance]

Trouble Shooting 8-1
Alarm List 8-3
Troubleshooting when alarms occur 8-5

- Troubleshooting when errors occur 8-27
Troubleshooting by history 8-28
About Code of status history 8-29
Inspection/Parts overhaul 8-30

■ Corrective Actions for Problems During Operation

OWhen troubles occur without any alarm displayed, check and take corrective actions for them referring to the description below. When alarm occurs, perform corrective measures referring to "Trouble Shooting When Alarm Occurs".

When you do the work for correction processing, be sure to turn off the power supply.

No	Problems	Investigation	Assumed causes and corrective actions
1	"三" does not light up to 7-segment LED even if main power is ON .	Check the voltage at the power input terminal.	- If voltage is low, check the power supply. - If there is no voltage, check that wires and screws are fastened properly.
		Check if red "CHARGE" LED is lighting off.	- Internal power circuit of servo amplifier is defective. \rightarrow Replace the servo amplifier.
2	7-segment LED displays a rotating character "8" (Servo ON status), but motor does not rotate.	Check of command is input by the digital operator's monitor. page 06 : Velocity Command Monitor page 08 : Torque Command Monitor page 0 E : Position Command Monitor The monitor's value is zero.	- Input a command.
		Servo is not locked.	- Confirm that power line of motor is connected.
		Check if torque limit is input.	- Because torque limit has been input, motor cannot rotate more than load torque.
		Enter deviation clear to check if process is continued.	- Stop the input of deviation clear.
3	Operation of the servomotor is unstable and velocity is lower than command.	Check if proportional control is entered.	- Stop the input of proportional control.
		Check if torque limit is input.	- Stop inputting torque limit.
4	Servo motor rotates only once, and stops.	Check motor power line.	- The motor power line is not connected.
		Check the setup of encoder resolution. The digital operator's system parameter page 05 : Absolute Encoder Resolution Setting. page 03 : Incremental Encoder Resolution Setting	- Change the settings and turn ON the power again.

No	Problems	Investigation	Assumed causes and corrective actions
5	Motor is accelerated.	Check the motor power line.	Phase order of motor power line does not match.
		Check the wiring of encoder cable.	Wiring of A phase and B phase of the encoder is incorrect.
6	Motor is vibrating with frequency above 200 Hz .	-	- Reduce the loop gain speed. Set the torque command low-pass filter and torque command notch filter.
7	Excessive over shoot/ under shoot during starting / stopping.	-	- Adjust the servo tuning "response". - Reduce the loop gain speed. - Increase the integral time constant. - Simplify the acceleration and declaration command. Use position command low-pass filter.
		Check that there is no defect in mechanical installation.	- Observe by operating one motor. - Pay attention while coupling and confirm that there is no core shift or unbalance.
8	Abnormal sound occurs	Check whether abnormal sound is random or periodic while operating at low speed.	Confirm that the twisted pair and shield processing of encoder signal line are correct. Confirm that the wiring for encoder line and power line are installed in the same port. Confirm that the power supply voltage is sufficient.

Alarm List

Operation at detecting: "DB" performs the slowdown stop of the servo motor in dynamic brake operation when the alarm generating Operation at detecting: "SB" performs the slowdown stop of the servo motor with sequence current limiting value.
When dynamic brake is selected by forced stop operation selection, the servo motor is decelerating stopped for the dynamic brake operation regardless of the operation when detecting it. (However, it stops in free servo brake operation at the time of alarm 53 H (DB resistor overheating) detection.

	Alarm code	Alarm title	Alarm contents	Detection Operations	Alarm Clear
	01H	Serial communication error 1	- Time-out error of a host device communication	DB	V
	21H	Power Module Error (Over-current)	- Over current of drive module - Abnormality in drive power source - Overheating of drive module	DB	V
	22 H	Current Detection Error 0	- Abnormality of electric current detection value	DB	V
	23H	Current Detection Error 1	- Abnormality of Electric current detection circuit	DB	V
	24H	Current Detection Error 2	- Abnormality in communication with Electric current detection circuit	DB	V
	31H	Positive Over-travel	- Positive Over-travel Status	DB	V
	32H	Negative Over-travel	- Negative Over-travel Status	DB	V
	41H	Overload 1	- Excessive effective torque	SB	\checkmark
	42 H	Overload 2	- Stall over load	DB	V
	43H	Regenerative Error	- Regeneration load ratio exorbitance	DB	V
	51H	Amplifier Overheat	- Overheating detection of amplifier ambient temperature	SB	V
	52H	RS Overheat	- Detection of in-rush prevention resistance overheating	SB	V
	53H	Dynamic Brake Resistor Overheat	- Overheating detection of DB resistor	SB	V
	54H	Internal Overheat	- Overheating detection of Internal regeneration resistor	DB	V
	55H	External Error	- Overheating detection of External regeneration resistor And Abnormal detection of host equipment	DB	V
	61H	Over-voltage	- DC Excess voltage of main circuit	DB	V
	62H	Main Circuit Under-voltage	- DC Main circuit low voltage	DB	V
	63H	Main Power Supply Fail Phase	- 1 phase of the 3 phase main circuit power supply disconnected	SB	V
	71H	Control Power Supply Under-voltage	- Control power supply low voltage	DB	Note 2)
	72H	Control Power Error	- Under voltage of +12 V	SB	V
	81H	Encoder Pulse Error 1 (A-phase, B-phase, Z-phase)	- Incremental encoder (A, B, Z) signal line break - Power supply break	DB	" "
	82H	Absolute Encoder Signal Disconnect	- Absolute Encoder (PS) signal line break	DB	V
	83H	External Encoder Pulse Error (CN-EXT: A-Phase, B-Phase, Z-Phase)	- Breaking of full close Encoder (A, B) signal line	DB	V
	84H	Communication Error Between Encoder and Amplifier	- Encoder serial signal time out	DB	$\begin{array}{\|c\|} \hline V \\ \text { Note 4) } \end{array}$
	85H	Encoder Initial Process Error	- Failed to read CS data of incremental encoder - Abnormality in initial process of absolute encoder - Cable break	-	" "
	87H	CS Signal Disconnection	- CS signal line break	DB	" "
	91H	Encoder Command Error	- Mismatch of transmission command and reception command	DB	V
	92H	Encoder FORM Error	- Start, Stop bit Abnormality - Insufficient data length	DB	V
	93H	Encoder SYNC Error	- Data cannot be received during the prescribed time after the command is sent.	DB	V
	94H	Encoder CRC Error	- CRC generated from the received data and sent CRC does not match	DB	V

Note 1:Control power error or servo ready OFF is detected during instantaneous break of 1.5 to 2 cycles.
Detection of control power error and servo ready OFF can be delayed by setting larger value of PFDDLY (Group B Page 16)
Note 2 :When the main power voltage increases or decreases gradually or is suspended, main circuit low voltage or main power failed phase may be detected.
Note 3:When full-close control/external encoder (CN2 input signal, see System Parameter Page 09) is selected, the alarm can be reset.
Note 4 :When the absolute encoder with incremental output is used, alarm resetting is prohibited.
Note 5:"V" means it is possible to reset. " "means it is not possible to reset.

	Alarm code	Alarm name	Alarm contents	Operations while detecting	Alarm clear
	A1H	Encoder Error 1	- Breakdown of Encoder internal device	DB	Note 3)
	A2H	Absolute Encoder Battery Error	- Battery low voltage	DB	Note 3)
	A3H	Encoder Overheat	- Motor built-in Encoder Overheating	DB	Note 3)
	A5H	Encoder Error 3	- Error generation of multi-rotation data - Abnormality in operations of temperature encoder	DB	Note 3)
	A6H	Encoder Error 4	- Encoder internal EEPROM data is not set - Overflow of multi-rotation data	DB	Note 3)
	A7H	Encoder Error 5	- Resolver Abnormality - Light receiving abnormality in encoder	DB	Note 3)
	A8H	Encoder Error 6	-Resolver disconnection - Light receiving abnormality in encoder	DB	Note 3)
	A9H	Failure of Encoder	- Encoder failure	DB	Note 3)
	B2H	Encoder Error 2	- Position data incorrect	DB	Note 3)
	B3H	Absolute Encoder Multi-Turn Counter Error	- Detection of incorrect multiple rotations coefficient	DB	Note 3)
	B4H	Absolute Encoder Single-Turn Counter Error	- Detection of incorrect 1 rotation coefficient	DB	Note 3)
	B5H	Over-allowable Speed of Absolute Enco Encoder at Turning ON	- Exceeds the permitted speed of motor rotation speed when the power is turned ON	DB	Note 3)
	B6H	Encoder Memory Error	- Access error of Encoder internal EEPROM	DB	Note 3)
	B7H	Acceleration Error	- Exceeds the permitted speed for motor rotation	DB	Note 3)
	C1H	Overvelocity	- Motor rotation speed is 120% more than the highest speed limit	DB	V
	C2H	Speed Control Error	- Torque command and acceleration direction are not matching.	DB	V
	C3H	Speed Feedback Error	- Motor power disconnection (Note 2)	DB	V
	D1H	Following Error (Excessive Position Deviation)	- Position error exceeds setup value	DB	V
	D2H	Faulty Position Command Pulse Frequency 1	- Frequency of entered position command pulse is excessive	SB	V
	D3H	Faulty Position Command Pulse Frequency 2	- Position command frequency after electronic gear is high.	SB	V
	DFH	Test Run Close	- Detection in 'Test mode end' status	DB	V
	E7H	Parameter error 3	- Error in address setting or baud rate setting of a host device communication	DB	""
	F1H	Task Process Error	- Error in interruption process of CPU	DB	" "
	F2H	Initial Process Time-Out	- Detection when initial process does not end within initial process time	-	" "
	FFH	Sub-CPU error	- Failure in procedure of initialization in common RAM. Error in a processor used for a host device communication	DB	""

Note 1: Alarm that rings in 'Test mode end' status is not recorded in the alarm history.
Note 2: When there is a rapid motor slow down simultaneous with servo ON, there is a possibility that a break in the motor's power line cannot be detected.
Note 3: Due to abnormality in encoder main body, encoder clear may sometimes be needed.
Note 4:"V" means it is possible to reset. " "means it is not possible to reset.

Warning List

	Warning Title	Warning Contents
Load system	Overload Warning	- When the effective torque exceeds the set torque
	Regenerated Overload Warning	- In case of overload of regenerative resistance
	Amplifier Overheating Warning	- Ambient temperature of the amplifier is out of range of the set temperature
$\begin{gathered} \text { Power supply } \\ \text { system } \\ \hline \end{gathered}$	Main circuit is charging	- Voltage of main circuit is above DC 105 V
External input system	Forward over travel	- While entering forward over travel
	Reverse over travel	- While entering reverse over travel
Encoder system	Absolute encoder battery warning	- Battery voltage is below 3.0 V
Control system	Restricting torque command	- While restricting the torque command by torque restriction value
	Restricting speed command	- While restricting the speed command by speed value.
	Excessive position deviation	- When position deviation warning setup value is outside the proscribed limits

Alarm code 01H (Time-out error of a host device communication)

Status at the time of alarm	Cause				
	1	2	3	4	5
Alarm raised after serial communication started	V	V	V	V	V
Issued during operation	V	V	V	V	V

Corrective actions

Cause		Investigation and corrective actions
1	- Cable connection of serial communication loose, or any disconnection part on communication line	- Check communication cable connection, or replace cables.
2	- Increase or decrease the command pulse frequency of a host device	- Setup command pulse frequency within the range of default value
3	- Serial communication generates noise.	- Inspect or replace/repair the twisted pair cables that have to be used for communication line - Separate and avoid noise source on the periphery of communication line
4	- Unequipped terminating resistances at the distal end of serial communication line.	- Check both of the distal ends for terminating resistances by Multi drop network
5	- A defective control panel of the servo amplifier	- Replace the servo amplifier

Alarm code 21H (Power Module Error I Overcurrent)

Status at the time of alarm	Cause			
	1	2	3	4
Issued when control power is turned ON.	(V)		V	(V)
Issued at servo input.	V	V	V	
Issued while starting and stopping the motor.	(V)	(V)	(V)	
Issued after extended operating time.	(V)	(V)	(V)	V

Corrective actions

Cause		Investigation and corrective actions
1	\cdot U/V/W-phase of amplifier is short circuited due to the wiring in amplifier and motor. Also, U/V/W-phases are grounded in the earth.	•Check the wiring between the amplifier and motor, and confirm that there is no error. If some error is detected, modify or change the wiring.
2	\cdot Short circuit or fault in U/V/W phases on servo motor side.	\cdot Replace the servo motor.
3	- Defect in control print panel \cdot Defect in power device	\cdot Replace the servo amplifier.
4	\cdot Overheat is detected in Power device (IPM).	-Confirm that the cooling fan motor for the servo amplifier is working. If it is not working, replace the servo amplifier. Confirm that the temperature of the control panel (ambient temperature of the servo amplifier) does not exceed $55^{\circ} \mathrm{C}$. If in excess of 55(C, check the installation method of the servo amplifier, and confirm that the cooling temperature of the control panel is set to below $55^{\circ} \mathrm{C}$

Alarm code 22H (Current Detection Error 0)

Status during alarm	Cause	
	1	2
Issued when the control power is turned ON.	V	(V)
Issued after the power is turned ON.	$\mathrm{V})$	V

Corrective actions

Cause		Investigation and corrective actions
1	•Defect in control print panel • Defect in power device	• Replace the servo amp.
2	- Servo amplifier and motor are not combined properly	- Confirm that the proper codes (per the specified Motor Codes) have been used for the servo motor; if not, replace the servo motor.

Note) V means the cause number with high possibility.
(V) means the cause number with middle possibility.

Alarm code 23H (Abnormal current detection1)
Alarm code 24H (Abnormal current detection2)

Status during alarm	Cause	
	1	2
Alarm occurs when control power turns on.	V	
Alarm occurs during operation.	$\mathrm{V})$	V

Corrective actions

Cause		Investigation and corrective actions
1	Defect inside the servo-amplifier circuit.	- Replace the servo-amplifier.
2	• Error by noise	- Check the amp-earth wire is installed properly. - Take countermeasure against the noise adding ferrite cores and so on.

Alarm code 31h (Over traveling in CW) Alarm code 32h (Over traveling in CCW)

Status during alarm	Cause	
	1	2
Alarm occurs when control power turns on.	V	
Alarm occurs during operation.	$\mathrm{V})$	V

Corrective actions

Cause		Investigation and corrective actions
1	- Defect of power supply (DC+24V) for external input signal. - Error of external wiring. - Wrong ethic of over-traveling signal - Defect inside servo-amplifier circuit.	- Turn the power supply for external input signal to (DC+24V $\pm 10 \%)$ - Check the external circuit and correct it if there is any abnormality. - Correct the ethic of over-traveling signal. - Replace servo-amplifier.
2	- Status of Over-traveling. - Error by noise	- Travel to the effective operation area. (Escape from over-traveling condition) - Check the amp-earth wire is properly installed. - Take countermeasure against the noise adding ferrite cores, etc.

1
SW2: It is possible to travel by negating over-travel with functional switch 2, but please operate it after specifying a cause that it came off from the effective operation area, since over-travel doesn't work in such status.

Alarm code 41H (Overload 1)

Status during alarm	Cause								
	1	2	3	4	5	6	7	8	9
Issued when power supply control is turned ON.	V								
Issued at input of servo ON.	V	V							V
After command input, issued without rotating the motor.		V			V	V	V		V
After command input, brief motor rotation			V	V	V		(V)	V	

Corrective actions

Cause		Investigation and corrective actions
1	- Defect in servo amplifier control panel or power element peripheral	- Replace the servo amplifier.
2	- Defect in encoder circuit of servomotor	- Replace the servo motor.
3	- Effective torque exceeds the rated torque.	- Monitor the load status using motor usage ratio monitor (OPRT), and check if effective torque exceeds the rated value. - Or, calculate the motor effective torque from load conditions and operation conditions. \rightarrow If the effective torque is excessive, check the operating or loading, or replace the capacity of the large motor.
4	- Defect in motor-amplifier combination	- Check if the motor in use matches with the recommended type, and replace if it is improper.
5	-Holding brake of servo motor does not release.	- Check that the wiring and voltage of the holding brake are acceptable; if not, repair. \rightarrow If the above are OK, replace the servomotor.
6	-Wiring of U/V/W -phase between servo amplifier and motor do not match.	- Check the wiring conditions and restore if improper.
7	- One or all connections of U/V/W -phase wiring of servo amplifier / motor is disconnected	- Check the wiring conditions and restore if improper.
8	- Machines collided.	- Check the operating conditions and limit switch.
9	- Encoder pulse number setting does not match with the motor.	- Match the encoder pulse number with the motor.

During the alarm caused by conditions in \#3 (above), if OFF \rightarrow ON of power supply control is repeated there is a risk of burning out the servo motor.
Wait for longer than 30 min . for cooling purposes after power shut OFF, and resume operations.
Note) V means the cause number with high possibility.
(V) means the cause number with middle possibility.

Alarm code 42H (Overload 2)

Status during alarm	Cause								
	1	2	3	4	5	6	7	8	9
Issued when power supply control is turned ON.	V								
Issued at input of servo ON.	V	V							V
After command input, issued without rotating the motor.		V			V	V	V		V
After command input, brief motor rotation			V	V	V		(V)	V	

Corrective actions

Cause		Investigation and corrective actions
1	-Defect in servo amplifier control panel or power element peripheral	- Replace the servo amplifier.
2	- Defect in encoder circuit of servomotor	-Replace the servo motor.
3	- Rotation is less than $50 \mathrm{~min}^{-1}$ and torque command exceeds approx. 2 times of rated torque.	- Check if torque command exceeds approx. 2 times of the rated torque by torque command monitor (TCMON). - Or, calculate the motor effective torque from load conditions and operation conditions. \rightarrow If the effective torque is excessive, check the operating or loading, or replace the capacity of the large motor.
4	- Defect in motor-amplifier combination	- Check the motor type setting and the motor in use are matching. If not, correct them.
5	-Holding brake of servo motor does not release.	- Check that wirings and voltage for holding brake are correct. If not, repair them. \rightarrow If they are appropriate, replace the servo motor.
6	-Wiring of U/V/W -phase between servo amplifier and motor do not match.	- Check the wiring conditions and restore if improper.
7	- One or all connections of U/V/W -phase wiring of servo amplifier / motor is disconnected	- Check the wiring conditions and restore if improper.
8	- Machines collided.	- Check the operating conditions and limit switch.
9	- Encoder pulse number setting does not match with the motor.	- Match the encoder pulse number with the motor.

Alarm code 43H (Regenerative Error)

Status during alarm	Cause							
	1	2	3	4	5	6	7	8
Issued when power supply control is turned ON.							V	
Issued when power supply of main circuit is turned ON.						V	V	V
Issued during operation.	V	V	V	V	V		(V)	

Corrective actions

Cause		Investigation and corrective actions
1	- Exceeded permitted value of regenerating power in built-in regenerative resistance specifications. - Excessive load inertia, or tact time is short.	- Check the load inertia and operating pattern. - Use an external regeneration resistor. - Set the load inertia within the specified range. - Increase the deceleration time. - Increase the tact time.
2	- Regenerative resistance wiring conflicts with built-in regenerative resistance specifications.	- Check wiring and replace if incorrect.
3	- Regenerative resistance wiring conflicts with external regeneration resistor specifications.	- Check wiring and replace if incorrect.
4	- Regeneration resistor is disconnected.	- For built-in regeneration resistor specifications, replace the servo amplifier. - For external regeneration resistor specifications, replace the regeneration resistor.
5	- Resistance value of external regeneration resistor is excessive.	- Replace the current resistance value with a value matching the specifications.
6	- Input power supply voltage exceeds the specified range.	- Check the input power supply voltage level.
7	- Defect in control circuit of servo amplifier.	- Replace the servo amplifier.
8	- When external regenerative resistance is selected for system parameter Page OB and external regenerative resistance is not installed.	- Install the external regenerative resistance. - Set to "Do not connect regenerative resistance".

If the setting of system parameter page OB regeneration resistance is incorrect, regeneration error is not detected properly, and the amplifier and surrounding circuit may be damaged or burnt.

Note) V means the cause number with high possibility.
(V) means the cause number with middle possibility.

Alarm code 51H (Amplifier Overheat)

Status during alarm	Cause				
	1	2	3	4	5
Issued when power supply control is turned ON.	(V)		V	(V)	
Issued during operation.	(V)	V	V	V	
Issued after emergency stop.					V

Corrective actions

Cause		Investigation and corrective actions
1	- Defect in internal circuit of servo amplifier.	- Replace the servo amplifier.
2	•Regenerating power exceeded.	Check the operating conditions. - Use external regeneration resistor.
3	-Regenerating power is within the specified range but ambient temperature of servo amplifier is out of specified range.	Confirm that the cooling method maintains the temperature of control panel between $0 \sim 55^{\circ} \mathrm{C}$.
4	Regenerating power is within the specified range but built-in cooling fan of servo amplifier is stopped.	- For an amplifier equipped with a cooling fan motor, check that the cooling fan motor is running; if not, replace the servo amplifier.
5	Regeneration energy during emergency stop exceeded.	- Change the servo amp. - Check the loading condition.

Abnormalities are detected in the internal temperature of the amplifier regardless of its ambient temperature. When an amplifier ambient temperature warning is issued, please be sure to check the cooling method of the control panel.

Alarm code 52H (RS Overheat) [only for RS1ם30]

Status during alarm	Cause		
	1	2	3
Issued when power supply is turned ON.	V		
Issued when main circuit power supply is turned ON.		V	
Issued during operation.			V

Corrective actions

Cause		Investigation and corrective actions
1	Defect in internal circuit of servo amplifier.	Replace the servo amplifier
2	- Power turning ON is repeated too frequently.	- Turn ON/OFF the power less frequently.
3	- Ambient temperature is high.	- For a servo amplifier equipped with a cooling fan motor, check that the cooling fan motor is running properly. If not, replace the servo amplifier. - Check if the temperature inside the control panel (servo amplifier ambient temperature) exceeds $55^{\circ} \mathrm{C}$. If it does, review the servo amplifier installing method and cooling method of control panel to make it below $55^{\circ} \mathrm{C}$.

Note) V means the cause number with high possibility.
(V) means the cause number with middle possibility.

Alarm code 53H (Dynamic Brake Resistor Overheat)

Status during alarm	Cause	
	1	2
Issued when power supply is turned ON.	V	
Issued during operation.	$\mathrm{C})$	V

Corrective actions

Cause		Investigation and corrective actions
1	Defect in internal circuit of servo amplifier.	- Replace the servo amplifier.
2	DB operation frequency exceeded.	• Use the dynamic brake so as not to exceed the permissive frequency.

Alarm code 54H (Internal Overheat)

Status during alarm	Cause		
	1	2	3
Issued when power supply control is turned ON.	(V)		V
Issued during operation.	(V)	V	V

Corrective actions

Cause		Investigation and corrective actions
1	- Defect in internal circuit of servo amplifier.	Replace the servo amplifier.
2	Regenerating power excessive.	Check the built-in regenerative resistance absorption power. Check the operating conditions, so that regenerating power is within permitted absorption power. Use an external regeneration resistor.
3	Improper wiring of built-in regeneration resistor.	Confirm improper condition and repair if necessary.

When using a regeneration resistance built in the servo amplifier, make sure to set "built-in regeneration resistance" at system parameter Page OB [Regeneration resistance type]. This setting makes the judgment between enabled/disabled of the overheating protection detection treatment of the built-in regeneration resistance. When "No connected regenerative resistance or external regenerative resistance" is selected, overheating of built-in regenerative resistance is not detected. Therefore, there is a danger that built-in regenerative resistance will burn out or be damaged.

Note) V means the cause number with high possibility.
(V) means the cause number with middle possibility.

Alarm code 55H (External Error)

-When external regenerative resistor and output terminal of upper device are not connected

Status during alarm	Cause	
	1	2
Issued when power supply control is turned ON.	V	(V)

Corrective actions

Cause		Investigation and corrective actions
1	Validity condition for external trip function is set to 'Valid'.	-When you do not use it, please set GroupD Sw2 bit2 as "1."
2	. Defect in control panel of servo amplifier.	. Replace the servo amplifier.

-When external regenerative resistor is not connected

Status during alarm	Cause		
	1	2	3
Issued when power supply control is turned ON.	V		(V)
Issued after operation.		V	(V)

Corrective actions

Cause		Investigation and corrective actions
1	Improper wiring of external regenerative resistance.	Check wiring and replace if necessary.
2	External regeneration resistor is operating.	Check the operating conditions. Increase the capacity of the external regeneration resistor.
3	Defect in control panel of servo amplifier.	Replace the servo amplifier.

- When output terminal of host device is connected:

Eliminate the alarm trigger of the upper level device.

Note) \vee means the cause number with high possibility.
(V) means the cause number with middle possibility.

Alarm code 61H (Overvoltage)

Status during alarm		Cause			
	1	2	3	4	
Issued when power supply control is turned ON.	V				
Issued when power supply of main circuit is turned ON.	V	V			
Issued at the time of motor start/stop.		$\mathrm{V})$	V	V	

Corrective actions

Cause		Investigation and corrective actions
1	- Defect in control panel of servo amplifier.	- Replace the servo amplifier.
2	- The power supply voltage of main circuit exceeds the rated value.	Reduce the power supply voltage to within the specified range.
3	- Excessive load inertia.	- Reduce the load inertia to within the specified range.
4	- Incorrect wiring for regeneration resistance - Built-in regeneration circuit is not functioning.	- Wire the regeneration resistance correctly. - While using the external regenerative resistance, check the wiring and resistance value. - Replace the servo amplifier if any abnormality occurs.

Alarm code 62H (Main Circuit Undervoltage)

Status during alarm		Cause				
	1	2	3	4	5	
Issued when power supply control is turned ON.				V	(V)	
Issued after power supply of main circuit is turned ON.	V	V				
Issued during operation, alarm resetting is possible.		$\mathrm{V})$	V			
Issued during operation, alarm resetting is not possible.		V				

Corrective actions

Cause		Investigation and corrective actions
1	- Power supply voltage is below the specified range.	- Check the power supply and set it within the specified range.
2	- Rectifier of main circuit is broken.	- Replace the servo amplifier.
3	- Input voltage is reduced and/or blinking.	Check the power supply and confirm that there is no blinking or low voltage, etc..
4	- Low voltage outside of the specified range is	Check the main circuit voltage. Confirm that there is no external power supply to $\mathrm{R} / \mathrm{S} / \mathrm{T}$ when the main circuit is OFF.
5	- Defect in internal circuit of the servo amplifier.	- Replace the servo amplifier.

Note) V means the cause number with high possibility.
(V) means the cause number with middle possibility.

Alarm code 63H (Main Power Supply Fail Phase)

Status during alarm		Cause		
	1	2	3	
Issued when power supply control is turned ON.		V		
Issued when power supply of main circuit is turned ON.	V		V	
Issued during motor operations.	$\mathrm{V})$			
Alarm issued during single-phase power input selection.			V	

Corrective actions

Cause	Investigation and corrective actions	
1	- One out of 3 phases (R/S/T) is not inserted.	- Check the wiring and repair if necessary.
2	Defect in internal circuit of Servo amplifier.	- Replace the servo amplifier.
Servo amplifier is not specified for single phase.	Check the model number and delivery specifications of the servo amplifier and replace it with a servo amplifier for single-phase power supply. Edit the parameters and use a single-phase specification amplifier.	

Alarm code 71H (Control Power Supply Under voltage)

Status during alarm	Cause		
	1	2	3
Issued at the time of power on.	(V)	V	
Issued during operation.	$\mathrm{V})$		V

Corrective actions

Cause		Investigation and corrective actions
1	Defect in internal circuit of the servo amplifier.	-Replace the servo amplifier.
2	-Power supply voltage is within the specified range.	Confirm that the power supply is set within the specified range.
3	-Input voltage is fluctuating or stopped.	Confirm that the power supply is not going to neither stop nor reduce the power, etc..

Alarm code 72H (Control Power Error)

Status during alarm	Cause	
	1	2
Issued when power supply control is turned ON.	(V)	V

Corrective actions

Cause		Investigation and corrective actions		
1	- Defect in internal circuit of the servo			
amplifier.			\quad-Replace the servo amplifier.	- Defect in external circuit
:---				
Restart the power supply after removing the connector; if alarm is not issued, check the external circuit. Restart the power supply after replacing the motor; if alarm is not issued, there is defect in the encoder's internal circuit.				

Note) V means the cause number with high possibility.
(V) means the cause number with middle possibility.

Alarm code 81H (Encoder Pulse Error 1 IA-phase, B-phase, Z-phase)
 Alarm code 82H (Absolute Encoder Signal Disconnect)
 Alarm code 84H (Communication Error Between Encoder and Amplifier)
 Alarm code 87H (CS Signal Disconnection)

Status during alarm	Cause					
	1	2	3	4	5	6
Issued when power supply control is turned ON.	V	V	V	V	V	V
Issued after servo is turned ON.				V	V	
Issued during operation.	(V)			V	V	

Corrective actions

Cause		Investigation and corrective actions
1	For encoder wiring: - Improper wiring -Connector is removed - Loose connection - Encoder cable is too long - Encoder cable is too thin	- Check wiring and repair any abnormality. - Confirm that the encoder power supply voltage of the motor is above 4.75 V ; increase it if below 4.75 V .
2	- Wrong amplifier encoder type is selected.	- Select the correct encoder type.
3	- Motor encoder that does not match with amplifier encoder type is attached.	-Replace with servo motor equipped with proper encoder.
4	- Defect in servo amplifier control circuit	-Replace the servo amplifier.
5	- Defect in servo motor encoder	- Replace the servo motor.
6	-Parameter set to 'Full-close/Servo system'.	- Edit the parameter and set to 'Semi-close/System setup'.

Alarm code 85H (Encoder Initial Process Error)

Status during alarm	Cause				
	1	2	3	4	5
Issued when power supply control is turned ON.	V	V	V	V	(V)

Corrective actions

Cause		Investigation and corrective actions
1	For encoder wiring: - Improper wiring - Connector is removed - Loose connection - Encoder cable is too long - Encoder cable is too thin	- Check wiring and repair any abnormality. - Confirm that the encoder power supply voltage of the motor is above 4.75 V ; increase it if below 4.75 V .
2	- Wrong amplifier encoder type is selected.	- Select the correct encoder type.
3	- Defect in servo amplifier control circuit	-Replace the servo amplifier.
4	- Defect in servo motor encoder	-Replace the servo motor.
5	- Initial position data could not be set, as the number of rotations of the motor is more than $250 \mathrm{~min}^{-1}$ during power supply.	-Restart the power supply after motor is stopped. (Only when PA035C and PA035S encoder is used.)

Note) V means the cause number with high possibility.
(V) means the cause number with middle possibility.

Alarm code 91H (Encoder Command Error)
 Alarm code 92H (Encoder FORM Error)
 Alarm code 93H (Encoder SYNC Error)
 Alarm code 94H (Encoder CRC Error)

When abnormalities are detected in the internal part of the absolute position detector for the start-stop synchronization system.

Corrective actions

Cause		Investigation and corrective actions
1	- Defect in encoder	• Replace the servo motor.
2	- Malfunction due to noise	- Confirm proper grounding of the amplifier. - Check the shielding of the encoder cable. Add ferrite core or similar countermeasures against noise.
3	- Abnormality in encoder wiring.	Check wiring between the encoder and amplifier.

Alarm code A1H (Encoder Error 1)

When abnormalities are detected in the internal part of the absolute position detector (RA062M) for the Manchester encoding system.

Status during alarm	Cause
	1
Issued when power supply is turned ON.	V
Issued during operation.	V

Corrective actions

Cause		Investigation and corrective actions
1	-Defect in internal circuit of encoder	Turn ON the power supply again; if not restored, replace the motor.

T0 "Encoder clearing and alarm resetting methods" vary depending on the encoder in use.
Refer to page 53 "Materials; Encoder Clear".
Alarm code A2H (Absolute Encoder Battery Error)

Status during alarm	Cause	
	1	2
Issued when control power is turned ON.	V	V
Issued during operation.		V

Corrective actions

Cause		Investigation and corrective actions
1	•Loose connection of battery cable.	Confirm the battery connection in the front ON/OFF switch of the amplifier.
2	\cdot Low battery voltage	- Check the battery voltage.

ED
"Encoder clearing and alarm resetting methods" vary depending on the encoder in use.
Refer to page 53 "Materials; Encoder Clear".

Note) V means the cause number with high possibility.
(V) means the cause number with middle possibility.

Alarm code A3H (Encoder Overheat)

When abnormalities are detected in the internal part of the absolute position detector for the start-stop synchronization system.

Status during alarm	Cause		
	1	2	3
Issued when control power supply is turned ON.	(V)	V	
Issued while stopping the motor.	(V)	V	
Issued during motor operations.		V	V

Corrective actions

Cause		Investigation and corrective actions
1	- Defect in internal circuit of encoder	Turn ON the power supply again; if not restored, replace the motor.
2	Motor is not generating heat, but encoder ambient temperature is high.	Confirm that the cooling method keeps the encoder ambient temperature below $80^{\circ} \mathrm{C}$.
3	- Motor is overheated.	- Confirm the cooling procedure of the servo motor.

[0] "Encoder clearing and alarm resetting methods" vary depending on the encoder in use.
Refer to page 53 "Materials; Encoder Clear".

Alarm code A5H (Encoder Error 3)

When abnormalities are detected in the internal part of the absolute position detector for the start-stop synchronization system.

Status during alarm	Cause		
	1	2	3
Issued when power supply is turned ON.	(V)	V	V
Issued during motor operations.	(V)	V	

Corrective actions

	Cause	Investigation and corrective actions
1	- Defect in internal circuit of encoder	- Turn ON the power supply again; if not restored, replace the motor.
2	- Malfunction due to noise	- Confirm proper grounding of the amplifier. - Check the shielding of the encoder cable. - Add ferrite core or similar countermeasures against noise.
3	- Number of rotations exceeds the permitted number of rotations.	- Turn ON the power supply again, when motor is stopped.

"Encoder clearing and alarm resetting methods" vary depending on the encoder in use.
Refer to page 53 "Materials; Encoder Clear".

Note) V means the cause number with high possibility.
(V) means the cause number with middle possibility.

Alarm code A6H (Encoder Error 4)

When abnormalities are detected in the internal part of the absolute position detector for the start-stop synchronization system.

Status when alarm rings.	Cause		
	1	2	3
Issued when power supply is turned ON.	V	V	
Issued during motor operations.		V	V

Corrective actions

Cause		Investigation and corrective actions
1	- Defect in internal circuit of encoder	- Turn ON the power supply again; if not restored, replace the motor.
2	- Malfunction due to noise	- Confirm proper grounding of the amplifier. - Check the shielding of the encoder cable. - Add ferrite core or similar countermeasures against noise.
3	- Multi-rotation counter overflows.	- Correct the operation pattern, and avoid the continuous operation in a fixed direction.

4

"Encoder clearing and alarm resetting methods" vary depending on the encoder in use.
Refer to page 53 "Materials; Encoder Clear".

Alarm code A7H (Encoder Error 5)
 Alarm code A8H (Encoder Error 6)
 Alarm code A9H (Failure of Encoder)

When abnormalities are detected in the internal part of the absolute position detector for the start-stop synchronization system.

Status during alarm	Cause	
	1	2
Issued when power supply is turned ON.	V	V
Issued during motor operations.	$\mathrm{C})$	V

Corrective actions

Cause		Investigation and corrective actions
1	- Defect in internal circuit of encoder	Turn ON the power supply again; if not restored, replace the motor.
2		Confirm proper grounding of the amplifier. - Check the shielding of the encoder cable. - Malfunction due to noise Add ferrite core or similar countermeasures against noise.

[^2]
Alarm Code B2H (Encoder Error 2)

When abnormality is detected in the internal part of the absolute position detector (RAO62M) of the Manchester system.

Status during alarm	Cause	
	1	2
Issued during operation.	(V)	V

Corrective actions

	Cause	Investigation and corrective actions
1	- Defect in internal circuit of encoder	- Turn ON the power supply again; if not restored, replace the motor.
2	- Malfunction due to noise	- Confirm proper grounding of the amplifier. - Check the shielding of the encoder cable. - Add ferrite core or similar countermeasures against noise.

"Encoder clearing and alarm resetting methods" vary depending on the encoder in use. Refer to page 53 "Materials; Encoder Clear".

Alarm code B3H (Absolute Encoder Multi-Turn Counter Error) Alarm code B4H (Absolute Encoder Single-Turn Counter Error) Alarm code B6H (Encoder Memory Error)

When abnormalities are detected in the internal part of the absolute position detector for the start-stop synchronization system.

Status during alarm	Cause	
	1	2
Issued when control power supply is turned ON.	V	
Issued while operation.	$\mathrm{V})$	V

Corrective actions

Cause		Investigation and corrective actions
1	- Defect in internal circuit of encoder	- Turn ON the power supply again; if not restored, replace the motor.
2	- Malfunction due to noise	- Confirm proper grounding of the amplifier. - Check the shielding of the encoder cable. - Add ferrite core or similar countermeasures against noise.

"Encoder clearing and alarm resetting methods" vary depending on the encoder in use.
Refer to page 53 "Materials; Encoder Clear".
Note) V means the cause number with high possibility.
(V) means the cause number with middle possibility.

Alarm code B5H (Over-allowable Speed of Absolute Encoder at Turning ON)

When abnormalities are detected in the internal part of the absolute position detector for the start-stop synchronization system.

Status during alarm	Cause		
	1	2	3
Issued when power supply is turned ON.	V		(V)
Issued while stopping the motor.	V	V	
Issued while rotating the motor.	$\mathrm{(V})$	V	V

Corrective actions

Cause		Investigation and corrective actions
1	- Defect in internal circuit of encoder	- Turn ON the power supply again; if not restored, replace the motor.
2	Malfunction due to noise	- Confirm proper grounding of the amplifier. - Check the shielding of the encoder cable. Add ferrite core or similar countermeasures against noise.
3	Number of motor rotations exceeds the permitted speed.	Check the operation pattern and reduce the maximum number of rotations.

"Encoder clearing and alarm resetting methods" vary depending on the encoder in use.
Refer to page 53 "Materials; Encoder Clear".

Alarm code B7H (Acceleration Error)

When abnormalities are detected in the internal part of the absolute position detector for the start-stop synchronization system.

Status during alarm	Cause		
	1	2	3
Issued while stopping the motor.	V	V	
Issued while rotating the motor.	$\mathrm{V})$	V	V

Corrective actions

Cause		Investigation and corrective actions
1	- Defect in internal circuit of encoder	- Turn ON the power supply again; if not restored, replace the motor.
2	- Malfunction due to noise	-Confirm proper grounding of the amplifier. Check the shielding of the encoder cable. - Add ferrite core or similar countermeasures against noise. 3- The acceleration of motor rotation exceeds the permitted acceleration

[0] "Encoder clearing and alarm resetting methods" vary depending on the encoder in use.
Refer to page 53 "Materials; Encoder Clear".

Note) V means the cause number with high possibility.
(V) means the cause number with middle possibility.

Alarm code C1H (Overvelocity)

Status during alarm	Cause			
	1	2	3	4
Issued when control power supply is turned ON.	V	(V)		
Issued if command is entered after Servo ON	(V)	V		
Issued when the motor is started.			V	V
Issued other than operating and starting the motor		V	V	

Corrective actions

Cause		Investigation and corrective actions
1	\cdot Defect in control panel of servo amplifier.	\cdot Replace the servo amplifier.
2	\cdot Defect in the encoder of servo motor	\cdotReplace the servo motor.
3	Excessive overshoot while starting.	Monitor speed with the analog monitor. Adjust the servo parameters if overshoot is excessive. Simplify the acceleration and declaration command pattern. Reduce the load inertia.
4	Wiring of U/V/W -phase between servo amplifier and motor do not match.	• Check the wiring and repair any irregularities.

Note) V means the cause number with high possibility.
(V) means the cause number with middle possibility.

Alarm code C2H (Speed Control Error)

Status during alarm	Cause				
	1	2	3	4	5
Issued when control power supply is turned ON.					V
Issued while due to input of Servo ON	V		V		
Issued if command is entered.	V	V	V		
Issued while starting and stopping the motor.				V	

Corrective actions

Cause		Investigation and corrective actions
1	Wiring of U/V/W -phase between servo amplifier and motor do not match.	• Check the wiring and repair any irregularities.
2	The wiring of A, B phase of INC-E and ABS-El encoder connection is incorrect.	- Check the wiring and repair any irregularities.
3	- The motor is vibrating (oscillating).	- Adjust the servo parameters so that servo motor will not vibrate (oscillate).
4	Excessive overshoot and undershoot.	- Monitor speed with the analog monitor. Adjust the servo parameters to reduce overshoot and undershoot. Increase acceleration and declaration command time. Mask the alarm.
5	Abnormality in servo amplifier control circuit	Replace the servo amplifier.

For the speed control error alarm, an alarm may occur while starting and stopping when load inertia is excessive.
For this reason, in the gravitational axis applications, "Do not detect" is selected as the standard setting.
If its detection is needed, consult our representatives.

Alarm code C3H (Speed Feedback Error)

Status during alarm	Cause		
	1	2	3
Issued when command is entered.	V	$\mathrm{V})$	V

Corrective actions

Cause		Investigation and corrective actions
1	- Motor is not rotating.	- Confirm that the power line is properly connected. Replace the servo motor.
2	- Defect in internal circuit of servo amplifier.	- Replace the servo amplifier.
3	- The motor is vibrating (oscillating).	Adjust the servo parameter so that servo motor will not vibrate (oscillate).

Note) V means the cause number with high possibility.
(V) means the cause number with middle possibility.

Alarm code D1H (Following Error / Excessive Position Deviation)

Status during alarm	Cause											
	1	2	3	4	5	6	7	8	9	10	11	12
Issued when control power supply is turned ON.										V		
Issued when servo ON is stopped.						V					V	
Issued immediately after entering the command.	V	(V)	V	V	V		V	(V)	V		(V)	
Issued during starting or stopping at high speed.	V	V					V	V	V		(V)	V
Issued during the operations by lengthy command.		V					V	(V)			(V)	

Corrective actions

Cause		Investigation and corrective actions
1	- Position command frequency is high or acceleration and declaration time is short.	- Correct the position command of the controller
2	Excessive initial load or low motor capacity.	- Correct the load condition or increase the motor capacity
3	Holding brake is not released.	- Check the wiring and repair any abnormalities. If specified voltage is applied, replace the servo motor.
4	Motor is mechanically locked or machine is colliding.	Check the machinery system.
5	- One or all phases of U/V/W -phase of the servo amplifier and motor has disconnected.	- Check and repair the wiring connections.
6	- Motor is being rotated by an external force (Gravity, etc.) during stopping (positioning completion).	- Check the load, and/or increase the motor capacity.
7	- Valid current limit command is entered by the controller, and the current limit setting is reduced. - Number of encoder pulses does not match with the motor.	- Increase the current limit value or disable the current limit. - Match the number of motor encoder pulses.
8	- Settings of servo parameters (Position loop gain, etc.) are not appropriate.	- Check the servo parameter settings (Raise the position loop gain, etc.)
9	- Excessive deviation setting value is reduced.	Set a greater value for excessive deviation.
10	- Defect in control panel of servo amplifier.	- Replace the servo amplifier.
11	- Servo motor encoder is defective.	- Replace the servo motor.
12	- Power supply voltage is low.	- Check the power supply voltage.

Alarm code D2H (Faulty Position Command Pulse Frequency 1)

Status during alarm	Cause
	1
Issued after entering position command pulse.	V

Corrective actions

Cause		Investigation and corrective actions
1	Command for the digital filter setting of the command pulse input is entered	Decrease the frequency of the command pulse. - Increase the frequency of the digital filter.

(V) means the cause number with middle possibility.

Alarm code D3H (Faulty Position Command Pulse Frequency 2)

Status during alarm	Cause	
	1	2
Issued after entering position command pulse.	V	V

Corrective actions

Cause		Investigation and corrective actions
1	- Frequency of command pulse input is excessive.	- Reduce the frequency of command pulse input.
2	- Setting value of electronic gear is excessive.	- Decrease the electronic gear setting value.

Alarm code DFH (Test Run Close)

Status during alarm	Cause
	1
Occurred after execution of test mode.	V

Corrective actions

Cause		Investigation and corrective actions
1	Normal operation.	Clear the alarm and restore operation. (After completion of test mode, to confirm any deviation in the controller).

Alarm code E1H (EEPROM Error)

Status during alarm	Cause	
	1	2
Issued when control power supply is turned ON.	V	(V)
Issued during display key operation or set up software operation.		V

Corrective actions

Cause		Investigation and corrective actions
1	Correct value not read by CPU by nonvolatile memory of built-in servo amplifier.	- Replace the servo amplifier.
2	- Defect in the servo amplifier control panel	- Replace the servo amplifier.

[^3](V) means the cause number with middle possibility.

Alarm code E2H (EEPROM Internal Data Error)

Status during alarm	Cause	
	1	2
Issued when control power supply is turned ON.	(V)	V

Corrective actions

Cause	Investigation and corrective actions	
1	Correct value not read by CPU by nonvolatile memory of built-in servo amplifier	- Replace the servo amplifier.
2	Failed to write into the nonvolatile memory during last power supply cutoff.	Change the optional parameters, turn ON the power supply again, and confirm that alarm has cleared. If alarm is not cleared, replace the servo amplifier.

Alarm code E3H (Internal RAM Error)
 Alarm code E4H (Process Error between CPU and ASIC)

Status during alarm	Cause
	1
Issued when control power supply is turned ON.	V

Corrective actions

Cause		Investigation and corrective actions
1	- Defect in the servo amplifier control panel	Replace the servo amplifier.

Alarm code E5H (Parameter Error 1)

Status during alarm	Cause	
	1	2
Issued when control power supply is turned ON.	V	V
Issued after changing any of system parameters.	V	

Corrective actions

Cause		Investigation and corrective actions
1	Selected value is outside the specified range for a system parameter.	- Confirm the model number of the servo amplifier. - Confirm selected values of system parameters and modify if necessary. \rightarrow Turn ON the power again and confirm that alarm is cleared.
2	Defect in servo amplifier	Replace the servo amplifier.

Note) V means the cause number with high possibility.
(V) means the cause number with middle possibility.

Alarm code E6H (Parameter Error 2)

Status during alarm	Cause	
	1	2
Issued when control power supply is turned ON.	V	V
Issued after changing any of system parameters.	V	

Corrective actions

Cause		Investigation and corrective actions
1	-Selected values of system parameters and actual hardware do not match Improper assembly of system parameter settings.	• Confirm the model number of servo amplifier. Confirm selected values of system parameters and correct if necessary. \rightarrow Turn ON the power again and confirm that alarm is cleared.
2	- Defect in servo amplifier	Replace the servo amplifier.

Alarm code E7H (Parameter Error 3)

Status during alarm	Cause	
	1	2
Issued when power is applied to the control source.	V	V

Corrective actions

Cause		Investigation and corrective actions
1	- Undetected setting values of rotary switches.	- Check address setting or baud rate setting of rotary switches.
2	- Defective control board in the servo amplifier	- Replace the servo amplifier

Alarm code F1H (Task Process Error)

Status during alarm	Cause
	1
Issued while operating.	V

Corrective actions

Cause		Investigation and corrective actions
1	Abnormality in control circuit of servo amplifier	Replace the servo amplifier

Alarm code F2H (Initial Process Time-Out)

Status during alarm	Cause	
	1	2
Issued when control power supply is turned ON.	V	V

Corrective actions

Cause		Investigation and corrective actions
1	- Defect in internal circuit of servo amplifier	Replace the servo amplifier.
2	Malfunction due to noise	- Confirm proper grounding of the amplifier. Add ferrite core or similar countermeasures against noise.

Alarm code FFH (Sub-CPU error)

Status during alarm	Cause
	1
Issued when power is applied to the control source.	V
Issued during operation	V

Corrective actions

Cause		Investigation and corrective actions
1	• Disable communication with a Sub-CPU Control circuit error in the servo amplifier	• Replace the servo amplifier

Note) V means the cause number with high possibility.
(V) means the cause number with middle possibility.

- Troubleshooting when error occurs.
-Please take countermeasure and process according to the correction measures on each error display following below procedure.

Error code	Alarm name (Code)	Operation status	Cause	Countermeasure/Process
16H	$\begin{gathered} + \text { Soft limitation } \\ \text { (OT_FWD) } \end{gathered}$	Full-time	- It traveled beyond soft limitation coordinates in CW.	- Travel within soft limitation by Jog. - Change the soft limitation setting of parameter.
17H	$\begin{aligned} & \begin{array}{l} - \text { Soft } \\ \text { limitation } \end{array} \\ & \text { (OT_RVS) } \end{aligned}$	Full-time	It traveled lower than soft limitation coordinates in -direction.	
18H	Point data error (POINT_DATA)	When operate point-traveling or while travel.	- The point is not registered for point-traveling. - Points on the way are not registered for sequence point-traveling.	- Input Alarm-reset for resetting error. - Register the point.
19H	ERR: Point Loop frequency setting error (Loop)	While processing Point movement or in Moving state	- The number of the nest is over 15 in Point jumpt/Loop function	- Follow the specification of Point Jump/Loop function to set a target point.
1AH	ERR: Point Loop nesting error (Nesting)	While processing Point movement or in moving state	- The Specified target point can't be a nest in Condition jump of Point jump/Loop function	
1BH	Zero-return Operation error (ZRT)	When operate Zero-return.	- Speed reduction time while operating Zero-return is too short.	- Expand the area of velocity reduction signal to secure the enough time for reducing speed(Traveling amounts).

- Troubleshooting by history.

There are 2 trace modes of Alarm History and Status History.
It is possible to see up to 7 Alarm Histories and 64 Status Histories.
However, the number of history that can be stored in non-volatile memory is up to 10 , so carefully turn off control power supply.
Please see below examples.

	Number	Status	
New	Last01	WAIT_ON	\cdots..Traveling completion
	Last02	Move_point:007	...Travel to P007
\uparrow	Last03	Move_point:006	...Travel to P006
	Last04	Move_point:005	...Travel to P005
	Last05	WAIT_ON	...Traveling completion
	Last06	STEP_ON	\cdots 1STEP Travel
	Last07	WAIT_ON	\cdots. Traveling completion
	Last08	JOG_ON	\cdots. ${ }^{\text {JOG }}$ Travel(When stop traveling in JOG travel,
	Last09	CANCEL_ON	the cancellation must be recorded as a history.)
	Last10	WAIT_ON	...Cancellation completion
	Last11	CANCEL_ON	
	Last12	Move_point:004	\cdots. Sequence traveling to P004
	Last13	Move_point:003	. . . Travel to P003
	Last14	ALM_None	\cdots. Reset
	Last15	ALM:55	\cdots Heating alarm goes out after completion.
	Last16	WAIT_ON	\cdots..Traveling completion
	Last17	Move_point:002	...Travel to P002
	Last18	WAIT_ON	...Traveling completion
	Last19	Move_point:001	...Travel to P001
	Last20	WAIT_ON	. . Servo ON
Old	Last21	SV_OFF	\cdots Control Power - Main power ON

As mentioned above, the status before and after alarm occurrences are recorded as a history, it is useful to investigate a cause of alarm.

In addition, Alarm History is as follows for the example.
Code Status
Last01 ALM:55 …..EXT Alarm occurs.

Last07 ALM:43 OL1 Alarm occurs.
However, the status history can be stored only up to 64 histories, therefore, it is recommended to check the history immediately when alarm occurs.

- About Code of Status History

Code	Contents
Move_Point : DEC[***]	Travel to "***"point code
WAIT_ON	Status of positioning completion. (Waiting for traveling signal on the status of servo-on.)
Cancel_ON	CANCEL(Cancellation)has been input, or, the status of stop JOG traveling
ZRT_ON	Activate Zero-return (ZRT input signal) has been input.
SDN_ON	Short of Home- point speed reduction signal (SDN input signal) has been input.
JOG_ON	Manual traveling (\pm JOG input signal) has been input.
STP_ON	Home-Point-Return operation has been completed.
HOME_ON	Dwell (Intermission) time is in practice.
DWEL	The status of servo-off: Servo-on signal (S-ON input signal) is turned OFF.
SV_OFF	External data setting input (E_STR input signal) has been input.
PRG_STR	Loop control is running.
LOOP	"Jump" performed.
JMP	
	Alarm goes out. Alarm code"**".
Control power established, internal positioning controller is at the ready.	
Err_Non	Error has been canceled.
Err_POINT_DATA	Error occurrence. Activate with non-registered point code (RUN input signal).
Alm_Non	Alm : **

Inspection

- For maintenance purposes, a daily inspection is typically sufficient. Upon inspection, refer to the following description.

Inspection location	Testing conditions			Inspection Items	Inspection Methods	Solution if abnormal	
	Time	During operation	While stopping				
Servo motor	Daily	V		Vibration	Check for excessive vibration.		
	Daily	V		Sound	Check if there is no abnormal sound as compared to normal sound.	Contact dealer/sales office.	
	Periodic		V	Cleanliness	Check for dirt and dust.	Clean with cloth or air. $\rightarrow!1$	
	Yearly		V	Measure value of insulation resistance	Contact the dealer or sales office.		
	$\begin{array}{\|c} 5000 \\ \text { hours } \\ \rightarrow!!2 \end{array}$		V	Replacement of oil seal			
Servo amplifier	Periodic		V	Cleaning	Check for dust accumulated in the accessories.	Clean with air. $\rightarrow \ 1$	
	Yearly		V	Loose screws	Check for loose connections	Fasten the screws properly.	
Absolute encoder back up battery	Regularly $\rightarrow \text { ! } 3$		V	Battery voltage	Confirm that battery voltage is more than DC3.6V.	Replace the battery.	
Temperature	On demand	V		Measure temperature	Ambient temperature Motor frame temperature	Set the ambient temperature within the limit. Check the load condition pattern.	

1. While cleaning with air, confirm that there is no oil content and/or moisture, etc. in the air.
2. This inspection and replacement period is when water- or oil-proof functions are required.
3. The life expectancy of the battery is approximately 2 years, when its power is OFF throughout the year. For replacement, a lithium battery (ER3VLY: $3.6 \mathrm{~V}, 1000 \mathrm{mAh}$) manufactured by TOSHIBA LIFESTYLE PRODUCTS \& SERVICES CORPORATION.

Parts Overhaul

Parts may deteriorate over time. Perform periodic inspection for preventive maintenance.

No.	Part name	Number of average replacement years	Corrective measures / usage conditions
1	Condenser for smoothing main circuit	5 Years	Replacement with new part is necessary. Load ratio : Less than 50\% of rated output current of amplifier Usage condition: Average temp. $40^{\circ} \mathrm{C}$ year-round
2	Cooling Fan motor	5 Years	Replacement with new part is necessary. Usage condition: Average temp. $40^{\circ} \mathrm{C}$ year-round
3	Lithium battery for absolute encoder [ER3VLY]	3 Years	Replacement with new part is necessary.
4	Electrolysis condenser (other than condenser for smoothing main circuit)	5 Years	Replacement with new part is necessary. Usage condition: Average temp. $40^{\circ} \mathrm{C}$ year-round Annual usage period is 4800 hours
5	Fuse	10 Years	Replacement with new part is necessary.

1. Condenser for smoothing the main circuit

- If the servo amplifier is in use for more than 3 years, contact the dealer or sales office.

The capacity of the condenser for smoothing the main circuit is reduces due to the frequency of motor output current and power ON/ OFF during usage, and it may cause damage.

- When the condenser is used with an average $40^{\circ} \mathrm{C}$ through out the year, and exceeds more than 50% of the rated output current of servo amplifier, it is necessary to replace the condenser with a new part every 5 years.
- When used in an application where the power turn ON/OFF is repeated more than 30 times a day, consult our representatives.

2. Cooling Fan motor

- The R-Series Amplifier is set corresponding to the degree of pollution specified in EN50178 or IEC 664-1. As it is not dust proof or oil proof, etc., use it in an environment above Pollution Degree 2 (i.e., Pollution Degree 1,2).
- R-Series servo amplifiers models RS1 $\square 03$, RS1 $\square 05$ RS1 $\square 10$ RS1 $\square 15$ and RS1 $\square 30$ have a built-in cooling fan; therefore be sure to maintain a space of 50 mm on the upper and lower side of the amplifier for airflow. Installation in a narrow space may cause damage due to a reduction in the static pressure of the cooling fan and/or degradation of electronic parts. Replacement is necessary if abnormal noise occurs, or oil or dust is observed on the parts. Also, at an average temperature of $40^{\circ} \mathrm{C}$ year-round, the life expectancy is 5 years.

3. Lithium battery

- The standard replacement period recommended by our company is the life expectancy of lithium battery based on normal usage conditions. However, if there is high frequency of turning the power ON/OFF, or the motor is not used for a long period, then the life of lithium battery is reduced. If the battery power is less than 3.6 V during inspection, replace it with new one.
- How to replace absolute encoder back-up battery
(1) Turn ON the servo amplifier control power supply.
(2) Prepare the replacement lithium battery. [SANYO model number: AL-00494635-01]
(3) Open the servo amplifier front cover.
(4) Remove the battery connector.
(5) Take out the used lithium battery and put in the new replacement one (prepared at (2)).
(6) Attach the connector in the right direction.
(7) Close the servo amplifier front cover.

[^4] ones before overhauling. Be sure to confirm the parameters before use.

[Specifications]

Servo amplifier 9-1
Servo motor general specifications 9-4
Mechanical specifications of servo motor 9-5
Holding brake specifications 9-7

- General specifications

＊1 Source Voltage should be within the specified range．
AC200V Power input type Specified power supply range AC170V to AC253V
AC100V Power input type Specified power supply range AC85V to AC127V
Install a step－down transformer，etc．if power supply exceeds the specified power supply．
＊2 AC200V single－phase input type corresponds only toRS1ロ01／RS1ロ03／RS1ロ05．
＊3 AC100V single－phase input type corresponds only toRS1口01／RS1■03．
＊4 When stored in the box，be sure that internal temperature does not exceed this range．
＊5 Minimum rotational speed is determined as equivalent to the amplifier not stopping for
a load with maximum continuous torque．
－Incoming current

Input voltage	Amplifier model name	Control circuit（Maximum value between 1 ms after input）＊3	Main circuit（Maximum value between 1.2 seconds after input）
AC200V	RS1 ${ }^{\text {a }}$ 01■	40A（O－P）	18A（O－P）＊1
	RS1 $\square 03 \square$		
	RS1■05 \square		
	RS1ロ10】		
	RS1ロ15 \square		
	RS1■30］		
AC100V	RS1 \square RS1 $\square 03 \square$	20A（O－P）	9A（O－P）＊2

＊1 Incoming current value is the maximum value when AC230V is supplied．
＊2 Incoming current value is the maximum value when AC115V is supplied．
＊3 Use thermistor for incoming current prevention circuit of power supply control．
When power is turned ON again after disconnection，power supply on／disconnection is repeated for short time，ambient temperature and temperature of thermistor is high，the incoming current exceeding the above mentioned table may pass．

Current leakage
Since＂R series＂Servo amplifier drives the motor by PWM control of IPM，electric current leakage of high frequency flows through the floating capacity of motor winding，power cable or amplifier．Malfunction in short circuit breaker and protective relay installed in power supply electric circuit may occur．Use the inverter as electricity leakage breaker，which provides countermeasures for wrong operations．

Motor model number	Electric current leakage per motor
RS1 $\square 01 \square$	0.5 mA
RS1 $\square 03 \square$	0.5 mA
RS1 $\square 05 \square$	1.5 mA
RS1 $\square 10 \square$	3.0 mA
RS1 $\square 15 \square$	3.0 mA
RS1 $\square 30 \square$	5.0 mA

－While using 2 or more motors，electric current leakage each motor is added．
－Tough－rubber sheath cable of 2 mm is used as power line，in case of short system and long system of cable length， value of above table should be selected as far as possible．
－The machine is grounded（type $D\left(3^{\text {rd }}\right.$ type））so that the dangerous voltage on the main part of a machine， operation panel，etc．does not arise at the time of an emergency leakage．
－The value of current leaked is the measured value in ordinary leak checkers（Filter 700 Hz ）．
－Calorific value

Input voltage	Amplifier capacity	Motor model number	Total calorific value of Servo amplifier（W）	Input voltage	Amplifier capacity	Motor model number	Total calorific value of Servo amplifier（W）
AC200V	RS1口01A	Q1AA04003D	11	AC200V	RS1口15A	Q1AA13400D	146
		Q1AA04005D	15			Q1AA13500D	169
		Q1AA04010D	18			Q1AA18450M	160
		Q1AA06020D	24			Q2AA18350H	138
		Q2AA04006D	12			Q2AA18450H	154
		Q2AA04010D	19			Q2AA18550R	201
		Q2AA05005D	16			Q2AA22350H	137
		Q2AA05010D	19			Q2AA22450R	150
		Q2AA05020D	26			Q2AA22550B	191
		Q2AA07020D	32			Q2AA22700S	222
						R2AA22500L	141
		Q2AA07030D	32		RS1ロ30A	Q1AA18750H	428
		R2AA04003F	11			Q2AA18550H	361
		R2AA04005F	13			Q2AA18750L	413
		R2AA04010F	15			Q2AA2211KV	496
		R2AA06010F	16	AC100V	RS1口01A	Q1EA04003D	16
		R2AA06020F	24			Q1EA04005D	22
		R2AA08020F	25			Q1EA04010D	27
	RS1口03A	Q1AA06040D	44			Q2EA04006D	21
		Q1AA07075D	66			Q2EA04010D	26
		Q2AA07040D	45			Q2EA05005D	22
		Q2AA07050D	62			Q2EA05010D	31
		Q2AA08050D	55			R2EA04003F	16
		Q2AA13050H	65			R2EA04005F	19
		R2AA06040F	43			R2EA04008F	21
		R2AA08040F	40			R2EA06010F	25
		R2AA08075F	67		RS1口03A	Q1EA06020D	51
		R2AA13050D	72			Q1EA06020D	
	RS1口05A	Q1AA10100D	47			Q2EA05020D	43
		Q1AA10150D	61			Q2EA07020D	49
		Q1AA12100D	47			R2EA06020F	41
		Q2AA08075D	43				
		Q2AA08100D	45				
		Q2AA10100H	50				
		Q2AA10150H	62				
		Q2AA13100H	58				
		Q2AA13150H	63				
		R2AAB8100F	45				
		R2AA13120D	61				
	RS1ロ10A	Q1AA10200D	111				
		Q1AA10250D	116				
		Q1AA12200D	101				
		Q1AA12300D	123				
		Q1AA13300D	125				
		Q2AA13200H	93				
		Q2AA18200H	101				
		Q2AA22250H	137				
		R2AA13200D	98				

－Generation of heat built－in regeneration resistance is not included in the numerical value given in the table，it is necessary to add it if needed．
－If external regeneration resistance is used，change the additional items of calorific value of external regeneration resistance as per the place where it is installed．
－Follow the installation method of the＂clause 2．for installation＂．

Servo motor general specifications

Series Name	Q1	Q2	R2
Time Rating	Continuous		
Insulation Classification	Type F		
Dielectric Strength Voltage	AC1500V 1 minute		
Insulation Resistance	DC500V，more than $10 \mathrm{M} \Omega$		
	Fully closed，Auto cooling		
Protection Method	IP67 （However，Q1ロA04，06 and 07 is IP40） It conforms to IP67 by using a waterproof connector，conduit，shell， clamp，etc．	IP67 （However，Q2口A04 is IP40）	IP67 （Excluding shaft passages and cable ends）
Sealing	Sealed（except Q1 \square A04，06，07）	Sealing（Except Q2口A04）	Not sealed（Optional）
Ambient Temperature	0 to $+40^{\circ} \mathrm{C}$		
Storage Temperature	-20 to $+65^{\circ} \mathrm{C}$		
Ambient Humidity	20 to 90%（Without condensation）		
Vibration Classification	V15		
Coating Color	Munsell N1．5 equivalent		
Excitation Method	Permanent－magnet type		
Installation Method	Flange mounting		

－Rotation Direction Specifications

－When a command to increase the position command is entered，the servo motor rotates in a counterclockwise direction from the load side

Encoder Signal Phases
Incremental encoder
＜Normal rotation＞

＜Reverse rotation＞

Phase Z

When the Z－Phase is high，both A－and B－Phases cross the low level，once every revolution．

Absolute encoder
Normal（forward）rotation：Position data increased output
Reverse rotation：Position data decreased output

9. Specifications [Mechanical specifications of servo motor]

- Mechanical specifications

- Vibration Resistance

Install the servo motor in a horizontal direction (as shown in the following figure), so that when vibration is applied in any 3 directions (up/down, back/forward, left/right) it can withstand the vibration acceleration up to $24.5 \mathrm{~m} / \mathrm{s}^{2}$.

- Shock Resistance

Install the shaft of the servo motor in a horizontal direction (as shown in the following figure). It should withstand shock acceleration up to $98 \mathrm{~m} / \mathrm{s}^{2}$ (when shocks are applied in an Up/down direction) for 2 times. However, since a precision detector is fixed to the counter-load side of the motor, any shock applied to the shaft may cause damage the detector; therefore, do not subject the shaft to shock under any circumstances.

- Working accuracy

The following table shows the accuracy of the servo motor output shaft and precision (Total Indicator Reading) of the parts surrounding the shaft.

9. Specifications [Mechanical specifications of servo motor]

- Vibration Classification

The vibration classification of the servo motor is V15 or less, at the maximum rotation speed for a single servo motor unit, and is measured in the manner pictured below.

- Mechanical Strength

The output strength of the servo motor can withstand instantaneous maximum torque.

- Oil seal

A Type S oil seal (as described in the following table) is fixed to the output shaft of the servo motor. This oil seal is produced by NOK Corporation; please contact your dealer or sales representative for replacement of the oil seal.

Servo Motor Model	Oil Seal type (Type S)	Servo Motor Model	Oil Seal type (Type S)
	Q1ロA04OOOD		Q2AA13OOOD

- Degree of decrease rating: R2AA Motor fixed oil seal and brake

About oil seal and brake fixed, considering of a rise in heat, continuous zone should apply the following degree of decrease rating.

Brake	Oil non-fixed oil seal	fixed oil seal
with no brake	No decrease rating	decrease rating 2
with brake	decrease rating 1	decrease rating 2

Decrease rating 1	Servo Motor Model R2AA	04010F	06040F
degree of decrease rating \%	90		

Decrease rating 2	Servo Motor Model R2AA	04005F	04010F	06040F	08075 F
	degree of decrease rating \%	90	85	80	90

Holding brake specifications

An optional holding brake is available for each motor. Since this brake is used for holding, it cannot be used for braking, except for an emergency. Turn brake excitation ON or OFF by using the holding brake timing signal output. When using this signal, set the command for brake release time to $0 \mathrm{~min}^{-}$ ${ }^{1}$ for the servo amplifier.
To externally control the holding brake, a response time (as shown in the following table) is required. When using a motor with a brake, determine a time sequence that takes this delay time into account.

	Model	Static friction torqueN.m	Release time msec	Braking delay time msec	
				Varistor	Diode
Q1	Q1AA04003D	0.098	25	15	100
	Q1AA04005D	0.157			
	Q1AA04010D	0.320			
	Q1AA06020D	0.637	30	20	120
	Q1AA06040D	1.274			
	Q1AA07075D	2.38	40	20	200
	Q1AA10100D	3.92	40	30	120
	Q1AA10150D	7.84	100	30	140
	Q1AA10200D	7.84			
	Q1AA10250D	9.80	100	30	140
	Q1AA12100D	3.92	100	30	140
	Q1AA12200D	7.84	100	30	140
	Q1AA12300D	11.8	100	30	140
	Q1AA13400D	19.6	120	50	150
	Q1AA13500D	19.6			
	Q1AA18450M	32.0	150	40	250
	Q1AA18750H	54.9	300	140	400
Q2	Q2AA04006D	0.191	25	15	100
	Q2AA04010D	0.319			
	Q2AA05005D	0.167	15	10	100
	Q2AA05010D	0.353			
	Q2AA05020D	0.353			
	Q2AA07020D	0.69	25	15	100
	Q2AA07030D	0.98			
	Q2AA07040D	1.372			
	Q2AA07050D	1.85	30	20	200
	Q2AA08050D	1.96	30	20	200
	Q2AA08075D	2.94			
	Q2AA08100D	2.94			
	Q2AA10100H	3.92	40	30	120
	Q2AA10150H	7.84	100	30	140
	Q2AA13050H	3.50	40	30	120
	Q2AA13100H	9.0	70	30	130
	Q2AA13150H	9.0			
	Q2AA13200H	12.0	100	30	140
	Q2AA18200H	12.0	100	30	140
	Q2AA18350H	32.0	120	40	150
	Q2AA18450H	32.0	150	40	250
	Q2AA18550R	54.9	300	140	400
	Q2AA18550H				
	Q2AA18750L				
	Q2AA22250H	32.0	300	140	400
	Q2AA22350H	32.0	300	140	400
	Q2AA22450H	32.0	300	140	400
	Q2AA22550B	90.0	300	140	400
	Q2AA22700S	90.0	300	140	400
	Q2AA2211KV				
	Q2AA2215KV				

	Model	Static friction torque N.m	Release time msec	Braking delay time msec	
				Varistor	Diode
Q1	Q1EA04003D	0.098	25	15	100
	Q1EA04005D	0.157			
	Q1EA04010D	0.32			
	Q1EA06020D	0.637	30	20	120
Q2	Q2EA04006D	0.191	25	15	100
	Q2EA04010D	0.319			
	Q2EA05005D	0.167	15	10	100
	Q2EA05010D	0.353			
	Q2EA05020D	0.353			
	Q2EA07020D	0.69	25	15	100
R2	R2AA04003F	0.32	25	15	100
	R2AA04005F	0.32			
	R2AA04010F	0.32			
	R2AA06010F	0.36	30	20	120
	R2AA06020F	1.37			
	R2AA08020F	2.55	40	20	200
	R2AA06040F	1.37	30	20	120
	R2AA08040F	2.55	40	20	200
	R2AA08075F	2.55			
	R2AAB8100F	3.92	40	20	200
	R2AA13050D	3.50	40	30	120
	R2AA13120D	9.0	100	30	130
	R2AA13200D	12.0	100	30	140
	R2AA22500L	42	150	60	250
	R2EA04003F	0.32	25	15	100
	R2EA04005F	0.32			
	R2EA04008F	0.32			
	R2EA06010F	0.36	30	20	120
	R2EA06020F	1.37			

Brake operating time is measured in the following circuit.

The brake release time and braking delay time refer to those mentioned in the above tables. The brake release time is the same for both the varistor and diode.

No Text on This Page.

[Selection Details]

- Time of Acceleration and Deceleration/Allowable Repetition 1
Allowable Repetition 2
Allowable Repetition/Loading Precaution 3
Dynamic brake 4
- Regeneration Process $\cdot 7$
- Calculation Method of Regeneration Power by Operations along Horizontal Axis 8
- Calculation Method of Regeneration Power by Operations along Vertical Axis 9
- Confirmation Method of Regeneration Power 10
- External Regenerative Resistor 11
- External Regenerative Resistor Dimension 15
[Global Standards]
- Global standards conformity 18
- Compliance with EC Directives 20
[Dimension]
- Servo amplifier 24
- Servo motor 33
[Servo Motor Data Sheet]
- Characteristics table 39
- Velocity - Torque characteristics 44
- Overload characteristics 52
[Option]
Metal mounting fittings 59
Monitor Box 63
- Lithium battery - EMC kit 64
[Encoder Clear]
- Encoder clear/ reset method 65

Materials: Selection Details

[Time of Acceleration and Deceleration/Allowable Repetition]

Time of Acceleration and Deceleration

- The motor's acceleration time (t a) and deceleration time (t b) when under a constant load is calculated by following method.
Acceleration time $: \mathrm{t}_{\mathrm{a}}=\left(\mathrm{J}_{\mathrm{M}}+\mathrm{J}_{\mathrm{L}}\right) \cdot(2 \pi / 60) \cdot\left\{\left(\mathrm{N}_{2}-\mathrm{N}_{1}\right) /\left(\mathrm{T}_{\mathrm{P}}-\mathrm{T}_{\mathrm{L}}\right)\right\}$
Deceleration time: $\mathrm{t}_{\mathrm{b}}=\left(\mathrm{J}_{\mathrm{M}}+\mathrm{J}_{\mathrm{L}}\right) \cdot(2 \pi / 60) \cdot\left\{\left(\mathrm{N}_{2}-\mathrm{N}_{1}\right) /\left(\mathrm{T}_{\mathrm{P}}+\mathrm{T}_{\mathrm{L}}\right)\right\}$
[S]

To These expressions are for the rated speed values, but exclude the viscous torque and friction torque of the motor.

$\mathrm{t}_{\mathrm{a}}:$ Acceleration time (S)	$\mathrm{T}_{\mathrm{P}}:$ Instantaneous maximum stall torque $(\mathrm{N} \cdot \mathrm{m})$
$\mathrm{t}_{\mathrm{b}}: \operatorname{Deceleration~time}(\mathrm{S})$	$\mathrm{T}_{\mathrm{L}}:$ Load torque $(\mathrm{N} \cdot \mathrm{m})$
$\mathrm{J}_{\mathrm{M}}:$ Motor inertia $\left(\mathrm{kg} \cdot \mathrm{m}^{2}\right)$	
$\mathrm{J}_{\mathrm{L}}:$ Load inertia $\left(\mathrm{kg} \cdot \mathrm{m}^{2}\right)$	
$\mathrm{N}_{1}, \mathrm{~N}_{2}:$ Rotational speed of motor $\left(\mathrm{min}^{-1}\right)$	

Time \qquad

Wen determining t_{a} and t_{b}, it is recommended to do so by calculating the load margin and decreasing the instantaneous maximum instant stall torque value (TP) to 80%.

Allowable repetitions

- There are separate limitations on repetitive operations for both the servo motor and servo amplifier, and the conditions of both must be fulfilled simultaneously.

Allowable repetitions for the servo amplifier

When START / STOP sequences are repeated frequently, confirm in advance that they are within the allowed range. Allowed repetitions differ depending on the type, capacity, load inertia, adjustable-speed current value and motor rotation speed of the motor in use. If the load inertia $=$ motor inertia $\times \mathrm{m}$ times, and when the permitted START / STOP repetitions (up until the maximum rotation speed) exceed $\frac{20}{m+1}$ times/min, contact your dealer or sales office for assistance, as precise calculation of effective torque and regenerating power is critical.

Permitted repetitions for the motor

Permitted START / STOP repetitions differ according to the motor's usage conditions, such as the load condition and time of operation.

When continuous-speed status and motor stop status is repeated

- In operating conditions such as those shown below, and the motor should be used at a frequency in which its effective torque is less than the rated torque $\left(T_{R}\right)$.

Servo Motor Torque

If the operating cycle is considered as ' t ', the usable range can be determined as follows:

$$
\mathrm{t} \geqq \frac{\mathrm{Ta}^{2} \mathrm{ta}+\mathrm{TL}^{2} \mathrm{ts}+\mathrm{Tb}^{2} \mathrm{tb}}{[\mathrm{~s}]}
$$

Ta: Acceleration torque
Tb: Deceleration torque
TL: Load torque
Trms: Efective torque
T_{R} : Rated torque
When cycle time (t$)$ is predetermined, $\mathrm{Ta}, \mathrm{Tb}, \mathrm{t}_{\mathrm{a}}, \mathrm{t}_{\mathrm{b}}$ appropriate in the above formula are required.
When actually determining the system drive mode, it is recommended to calculate the load margin and suppress it to $\mathrm{Trms}^{\leqq} \leqq 0.7 \mathrm{~T}_{\mathrm{R}}$

- When the motor repeats acceleration, deceleration, and stop status
- For the operating status shown below, the value of permitted repetitions n (times $/ \mathrm{min}$) is displayed by following equation.

Materials Selection Details [Allowable Repetition/Loading Precaution]

-When the motor repeats acceleration, constant speed operation, and deceleration status

- For the operating status shown below, the value of permitted repetitions 'n' (times/min) is displayed by following equation.

$$
n=2 . \quad 86 \times 10^{2} \times \frac{1}{N\left(J_{M}+J_{L}\right)} \times \frac{T_{R}{ }^{2}-T_{L}{ }^{2}}{T_{P}} \quad[\text { times } / \mathrm{min}]
$$

Loading Precautions

- Negative load

The servo amplifier cannot perform continuous operations by negative load from the servo motor for more than several seconds.
When using the amplifier with a negative load, contact your dealer or sales representative.

- Downward motor drive (when there is no counter weight.)
- When usinglike a generator, such as the wind-out spindle of a winder.
- Load Inertia (JL)

When the servo amplifier is used with a load inertia exceeding the allowable load intertia calculated in terms of the motor shaft, a main circuit power overvoltage detection or regenerative error function may be issued at the time of deceleration.

The following measures must be taken in this case. For more details, please consult with your dealer or sales representative.

- Reduce the torque limit
- Extend the acceleration and deceleration time (Slow down)
- Reduce the maximum motor speed
- Install an external regenerative resistor
- Slowing down the revolution angle by the dynamic brake
- Slowing down the revolution angle by the dynamic brake is as follows:

N : Motor speed (min^{-1})
l_{1} : Slow-down revolution angle (rad) by amplifier internal process time $t \mathrm{D}$.
I_{2} : Slow-down revolution angle (rad) by on dynamic brake operation
t_{D} : Delay time from signal display to operation start (s) (Depending on amplifier capacity; Refer to following)

Servo Amplifier Model Name	Delay Time t $\mathrm{t}_{\mathrm{D}}(\mathrm{S})$
RS1 $\square 01$ $\square=\mathrm{L} / \mathrm{A} / \mathrm{N} / \mathrm{E}$	10×10^{-3}
$\mathrm{RS} 1 \square 03$ $\square=\mathrm{L} / \mathrm{A} / \mathrm{N} / \mathrm{E}$	10×10^{-3}
$\mathrm{RS} 1 \square 05$ $\square=\mathrm{A} / \mathrm{L}$	10×10^{-3}
RS1 $\square 10$ $\square=\mathrm{A} / \mathrm{L}$	24×10^{-3}
RS1 15 $\square=\mathrm{A} / \mathrm{L}$	24×10^{-3}
RS1A30	42×10^{-3}

[Standard formula] When load torque $\left(\mathrm{T}_{\mathrm{L}}\right)$ is considered as zero.

$$
\begin{aligned}
I & =I_{1}+I_{2} \\
& =\frac{2 \pi N^{\cdot} t_{D}}{60}+(J M+J L) \times\left(\alpha N+\beta N^{3}\right)
\end{aligned}
$$

I: Integrated slow-down rotation angle (rad)
J_{m} : Motor inertia ($\mathrm{kg} \cdot \mathrm{m}^{2}$)
J_{L} : Load inertia (Motor axis conversion) (kg $\cdot \mathrm{m}^{2}$) •
$\alpha \cdot \beta:$ Refer to the constant table of the dynamic brake

- Instantaneous tolerance of dynamic brake
- If the load inertia (J_{L}) substantially exceeds the applicable load inertia, abnormal heat can be generated due to dynamic brake resistance. Take precautions against situations such as an overheat alarm or the failure of dynamic break resistance, and consult your dealer or sales representative if such a situation occurs.

The energy ($E_{R D}$) consumed by dynamic brake resistance in 1 dynamic brake operation is as follows:

$$
E_{R D}=\frac{2.5}{R \phi+2.5} \times\left\{\frac{1}{2}\left(J_{M}+J_{L}\right) \times\left(\frac{2 \pi}{60} N\right)^{2}-I \times T_{L}\right\}
$$

$R \phi \quad: \quad$ Motor phase winding resistance (Ω)
$J_{M}: \quad$ Motor inertia (kg./m²)
J_{L} : Load inertia (Motor shaft conversion) (kg/m²)
N : Number of motor rotations (min^{-1}) in feed rate V
I : Integrated slow-down rotating angle (rad)
TL : Load torque (N / m)
(C) Dynamic brake resistance may fail if the energy $E_{R D}$ consumed by dynamic brake resistance during dynamic brake operation exceeds the energy shown in the following table. Consult with the dealer or sales representative if such a situation is anticipated.

Amplifier Model Name	$E_{R D}(J)$
RS1 $\square 01$ $\square=L / A / N / E$	360
RS1 $\square 03$ $\square=L / A / N / E$	360
RS1 $\square 05$ $\square=A / L$	1800
RS1 $\square 10$ $\square=A / L$	2450
RS1 $\square 15$ $\square=A / L$	2450
RS1A30	9384

■Allowable frequency of dynamic brake

-The allowable frequency (main circuit power ON/OFF) of the dynamic brake is less than 10 rotations per hour and 50 rotations per day under the conditions of maximum speed. However the load inertia is within the applicable one.

In basic terms, operation of the dynamic brake in six-minute intervals between two operations is permissable at maximum speed, but if the brake is to be operated with greater frequency, the motor speed must be reduced.
Use the following ratio to determine allowable frequency:
$\frac{6 \mathrm{~min}}{\left(\text { Number of rated rotations/ maximum number of rotations for usage) }{ }^{2}\right.}$

Dynamic brake constant table.

Amplifier capacity	Motor model number	α	β	$J m\left(k g \cdot m^{2}\right)$
RS1A01 RS1L01	Q1AA04003D	204	92.0×10^{-7}	0.01×10^{-4}
	Q1AA04005D	130	34.3×10^{-7}	0.0134×10^{-4}
	Q1AA04010D	53	35.0×10^{-7}	0.0233×10^{-4}
	Q1AA06020D	13	32×10^{-7}	0.141×10^{-4}
	Q2AA04006D	87.8	25.6×10^{-7}	0.057×10^{-4}
	Q2AA04010D	55.2	8.4×10^{-7}	0.086×10^{-4}
	Q2AA05005D	132	10.7×10^{-7}	0.067×10^{-4}
	Q2AA05010D	45.2	7.93×10^{-7}	0.13×10^{-4}
	Q2AA05020D	19.0	46.9×10^{-7}	0.25×10^{-4}
	Q2AA07020D	25.9	11.7×10^{-7}	0.38×10^{-4}
	Q2AA07030D	11.0	13.9×10^{-7}	0.45×10^{-4}
	R2AA04003F	227	4.29×10^{-6}	0.0247×10^{-4}
	R2AA04005F	119	2.96×10^{-6}	0.0376×10^{-4}
	R2AA04010F	41.2	1.56×10^{-6}	0.0627×10^{-4}
	R2AA06010F	32.6	5.04×10^{-6}	0.117×10^{-4}
	R2AA06020F	14.5	2.46×10^{-6}	0.219×10^{-4}
	R2AA08020F	11.3	1.13×10^{-6}	0.52×10^{-4}
$\begin{aligned} & \text { RS1A03 } \\ & \text { RA1L03 } \end{aligned}$	Q1AA06040D	9.13	13.1×10^{-7}	0.247×10^{-4}
	Q1AA07050D	5.24	7.75×10^{-7}	0.636×10^{-4}
	Q2AA07040D	10.2	7.08×10^{-7}	0.75×10^{-4}
	Q2AA07050D	10.6	3.84×10^{-7}	0.85×10^{-4}
	Q2AA08050D	7.71	4.51×10^{-7}	1.30×10^{-4}
	Q2AA 13050H	5.34	6.99×10^{-7}	2.80×10^{-4}
	R2AA06040F	8.82	1.00×10^{-6}	0.412×10^{-4}
	R2AA08040F	6.91	4.25×10^{-6}	1.04×10^{-4}
	R2AA08075F	5.84	9.10×10^{-8}	1.82×10^{-4}
	R2AA13050D	6.46	2.14×10^{-6}	3.1×10^{-4}
$\begin{aligned} & \text { RS1A05 } \\ & \text { RS1L05 } \end{aligned}$	Q1AA10100D	6.50	6.89×10^{-7}	1.29×10^{-4}
	Q1AA10150D	3.95	3.60×10^{-7}	1.61×10^{-4}
	Q2AA08075D	9.23	1.71×10^{-7}	2.07×10^{-4}
	Q2AA08100D	5.30	1.62×10^{-7}	2.7×10^{-4}
	Q2AA 10100H	2.78	1.50×10^{-7}	5.4×10^{-4}
	Q2AA10150H	2.03	0.92×10^{-7}	8.0×10^{-4}
	Q2AA13100H	2.81	3.35×10^{-7}	5.40×10^{-4}
	Q2AA13150H	1.79	2.33×10^{-7}	7.94×10^{-4}
	R2AAB8100F	5.46	2.08×10^{-7}	2.38×10^{-4}
	R2AA13120D	4.06	6.45×10^{-7}	6.0×10^{-4}
$\begin{aligned} & \text { RS1A10 } \\ & \text { RS1L10 } \end{aligned}$	Q1AA10200D	4.19	0.47×10^{-7}	2.15×10^{-4}
	Q1AA10250D	2.70	0.46×10^{-7}	2.65×10^{-4}
	Q1AA12200D	2.85	0.33×10^{-7}	4.37×10^{-4}
	Q1AA12300D	1.53	0.27×10^{-7}	6.40×10^{-4}
	Q1AA13300D	1.78	0.53×10^{-7}	4.92×10^{-4}
	Q2AA13200H	1.23	0.48×10^{-7}	12×10^{-4}
	Q2AA 18200H	1.49	0.36×10^{-7}	20×10^{-4}
	Q2AA22250H	1.83	0.24×10^{-7}	32.20×10^{-4}
	R2AA13200D	1.69	0.91×10^{-7}	12.2×10^{-4}
$\begin{aligned} & \text { RS1A15 } \\ & \text { RS1L15 } \end{aligned}$	Q1AA13400D	2.13	0.25×10^{-7}	6.43×10^{-4}
	Q1AA13500D	1.52	0.20×10^{-7}	8.47×10^{-4}
	Q1AA18450M	0.43	0.35×10^{-7}	27.5×10^{-4}
	Q2AA18350H	1.14	0.09×10^{-7}	38×10^{-4}
	Q2AA18450H	0.74	0.09×10^{-7}	55×10^{-4}
	Q2AA18550R	0.52	0.05×10^{-7}	72.65×10^{-4}
	Q2AA22350H	1.13	0.17×10^{-7}	47.33×10^{-4}
	Q2AA22450R	0.76	0.12×10^{-7}	67.45×10^{-4}
	Q2AA22550B	0.46	0.11×10^{-7}	95×10^{-4}
	Q2AA22700S	0.18	0.10×10^{-7}	185×10^{-4}
	R2AA22500L	0.8	0.41×10^{-7}	55×10^{-4}
RS1A30	Q1AA18750H	0.96	4.77×10^{-9}	52×10^{-4}
	Q2AA18550H	1.15	2.29×10^{-9}	73×10^{-4}
	Q2AA18750L	0.725	2.30×10^{-9}	95×10^{-4}
	Q2AA2211KV	0.475	2.47×10^{-9}	186×10^{-4}
	Q2AA2215KV	0.335	1.96×10^{-9}	255×10^{-4}

Amplifier capacity	Motor model number	α	β	$J_{M}\left(\mathrm{~kg} \cdot \mathrm{~m}^{2}\right)$
RS1E01RS1N01	Q1EA04003D	276	68.1×10^{-7}	0.01×10^{-4}
	Q1EA04005D	205	39.7×10^{-7}	0.0134×10^{-4}
	Q1EA04010D	82.3	26.1×10^{-7}	0.0233×10^{-4}
	Q2EA04006D	129	7.40×10^{-7}	0.057×10^{-4}
	Q2EA04010D	72.5	4.91×10^{-7}	0.086×10^{-4}
	Q2EA05005D	212	3.48×10^{-7}	0.067×10^{-4}
	Q2EA05010D	71.6	2.55×10^{-7}	0.13×10^{-4}
	R2EA04003F	305	3.19×10^{-6}	0.0247×10^{-4}
	R2EA04005F	171	2.06×10^{-6}	0.0376×10^{-4}
	R2EA04008F	69.7	1.06×10^{-6}	0.0627×10^{-4}
	R2EA06010F	59.1	2.84×10^{-6}	0.117×10^{-4}
RS1E03RS1N03	Q1EA06020D	56.3	9.57×10^{-7}	0.141×10^{-4}
	Q2EA05020D	46.4	0.99×10^{-7}	0.25×10^{-4}
	Q2EA07020D	57.0	5.22×10^{-7}	0.38×10^{-4}
	R2EA06020F	38.8	9.10×10^{-7}	0.219×10^{-4}

The values for α and β are based on an assumed resistance value of the power line of 0Ω. If the combination with an amplifier is different than those shown above, consult your dealer or sales office.

- Regeneration Process

- The regeneration capacity of the servo amplifier depends on the allowable power of the regenerative resistor. When using the servo amplifier with built-in regeneration resistor, be sure to calculate regeneration resistance PM and confirm that PM<PRI (the allowable power for the built-in regeneration resistor) is fulfilled.
When regeneration power PM exceeds the permitted power (PRI) of the built-in regeneration resistor, you can operate by conducting regeneration restance (PM) caluculation, confirming that $\mathrm{PM}<\mathrm{PRO}$ (the maximum allowable power of the exterior regeneration resistor) is fulfilled, and connecting the opional external regeneration resistor

	Built-in regeneration resistor is available [PRI]	Regeneration resistor connecting number	External regeneration resistor is available [PRO]	Regeneration resistor connecting number	Contact us in case below
RS1 01	$\mathrm{PM}=2 \mathrm{~W}$ and below	I	$\mathrm{PM}=220 \mathrm{Wand}$ below		$\mathrm{PM}=220 \mathrm{~W}$ and up
$\mathrm{RS} 1 \square 03$	$\mathrm{PM}=5 \mathrm{~W}$ and below	I	$\mathrm{PM}=220 \mathrm{Wand}$ below	Refer to	$\mathrm{PM}=220 \mathrm{~W}$ and up
$\mathrm{RS} 1 \square 05$	$\mathrm{PM}=20 \mathrm{~W}$ and below	I	$\mathrm{PM}=500 \mathrm{Wand}$ below	"Materials"	$\mathrm{PM}=500 \mathrm{Wand}$ up
$\mathrm{RS} 1 \square 10$	$\mathrm{PM}=90 \mathrm{~W}$ and below	II	$\mathrm{PM}=500 \mathrm{Wand}$ below	page 11	$\mathrm{PM}=500 \mathrm{Wand}$ up
$\mathrm{RS} 1 \square 15$	$\mathrm{PM}=120 \mathrm{~W}$ and below	II	$\mathrm{PM}=500 \mathrm{Wand}$ below		$\mathrm{PM}=500 \mathrm{Wand}$ up
$\mathrm{RS} 1 \square 30$		-		$\mathrm{PM}=500 \mathrm{Wand}$ below	

4] If using the bult-in regeneration resistor, please specify the model
number of the servo amplifier with bult-in regeneration resistor in reference to
"Section 1: Prior to Use - Servo Amplifier Model Number"
If using the exterior regeneration resistor, please specify the model number of the servo amplifier without bult-in regeneration resistor.

40
When regeneration power PM exceeds the maximum permitted power (PRO) of the external regeneration resistor, reconsider the acceleration constant, load inertia, etc.

- Resistance Value of Servo Amplifier Built-in Regeneration Resistor

Model Number of Servo Amplifier with Built-in Regeneration Resistor	Resistance Value of Built-in Regeneration Resistor
RS1 $\square 01$ $\square=L / M / N / P$	100Ω
RS1 $\square 03$ $\square=L / M ~ / ~ N ~ / ~ P ~$	50Ω
RS1 $\square 05$ $\square=$ A / B	17Ω
RS1A10 $\square=$ A / B	10Ω
RS1A15 $\square=$ A / B	6Ω

- Regeneration Power (PM) by Operations along Horizontal Axis
- Regeneration energy is calculated.

$\mathrm{EM}=\mathrm{EHb}=$	$\frac{1}{2} \times \mathrm{N} \times 3 \cdot \mathrm{KE} \phi \times \frac{\mathrm{Tb}}{\mathrm{KT}} \times \mathrm{tb}-\left(\frac{\mathrm{Tb}}{\mathrm{KT}}\right.$	$)^{2} \times 3 \cdot R \phi \times t b$
EM	Regeneration energy during operations along horizontal axis	
EHB	Regeneration energy during deceleration	[J]
KE ϕ :	Induced voltage constant	[$\left.\mathrm{Vrms} / \mathrm{min}^{-1}\right]$ (Motor constant)
KT	Torque constant	[$\mathrm{N} \cdot \mathrm{m} /$ Arms] (Motor constant)
N	Motor rotation speed	. $\left[\mathrm{min}^{-1}\right]$
R ϕ	Armature resistance	[Ω] (Motor constant)
Tb	Deceleration time	[s]
Tb	Torque during deceleration	[$\mathrm{N} \cdot \mathrm{m}$] (Tb= Tc - TF)
Tc	Adjustable speed torque	$\ldots[\mathrm{N} \cdot \mathrm{m}]$
TF	Friction torque	$\ldots[\mathrm{N} \cdot \mathrm{m}]$

- Effective regeneration power is calculated.

$$
P M=\frac{E M}{t 0}
$$

PM : Effective regeneration power [W]
EM : Regeneration energy during deceleration [J]
To : Cycle time [s]

Materials Selection Details

[Calculation Method of Regeneration Power by Operations along Vertical Axis]

- Regeneration Power (PM) by Operations along Vertical Axis (With a Gravitational Load)
- Regenerative energy is calculated.

$$
\begin{aligned}
E M & =E V U b+E V D+E V D b \\
& =\frac{1}{2} \mathrm{~N} \times 3 \cdot \mathrm{KE} \phi \times \frac{\mathrm{TUb}}{\mathrm{KT}} \times \mathrm{tUb}-\left(\frac{\mathrm{TUb}}{\mathrm{KT}}\right)^{2} \times 3 \cdot \mathrm{R} \phi \times \mathrm{tUb} \\
& +\mathrm{N} \times 3 \cdot \mathrm{KE} \phi \times \frac{\mathrm{TD}}{\mathrm{KT}} \times \mathrm{tD}-\left(\frac{\mathrm{TD}}{\mathrm{KT}}\right)^{2} \times 3 \cdot \mathrm{R} \phi \times \mathrm{tD} \\
& +\frac{1}{2} \mathrm{~N} \times 3 \cdot \mathrm{KE} \phi \times \frac{\mathrm{TDb}}{\mathrm{KT}} \times \mathrm{tDb}-\left(\frac{\mathrm{TDb}}{\mathrm{KT}}\right)^{2} \times 3 \cdot \mathrm{R} \phi \times \mathrm{tDb}
\end{aligned}
$$

EM : Regeneration energy during operations along vertical axis[J]
EVUb : Regeneration energy during increased deceleration[J]
EVD : Regeneration energy during descending run[J]
EVDb : Regeneration energy during decreased deceleration[J]
TUb : Torque during increased deceleration[N•m]
TUb : Increased deceleration time[s]
TD : Torque during descending run[$\mathrm{N} \cdot \mathrm{m}$] (TD=TM $-T F)$
TD : Descending run time[s]
TDb : Torque during decreased deceleration[$\mathrm{N} \cdot \mathrm{m}$] (TDb=TC - TF+TM)
TDb : Decreased deceleration time[s]
TM : Gravitational load torque[N•m]
When the calculation result of either of EVUb, EVD, or EVDb is negative, calculate EM by considering the value of those variabkes as 0 .

- Effective regeneration power is calculated.

$$
\begin{array}{lll}
\mathrm{PM}=\frac{\mathrm{EM}}{\text { to }} \quad \begin{array}{ll}
\mathrm{PM} & \mathrm{EM}
\end{array} & \begin{array}{l}
\text { : Effective regeneration power }[\mathrm{W}] \\
\text { : Regeneration energy during increased deceleration/ descending } \\
/ \text { / decreased deceleration }[\mathrm{J}]
\end{array} \\
& \text { to } & : \text { Cycle time }[\mathrm{s}]
\end{array}
$$

Confirmation method of regeneration power PM in actual operation

- Regeneration power PM can be easily confirmed in the setup software.
Setup software $\cdots \cdots$ Monitor display Page 12• RegP•Regeneration circuit operating rate

©The monitor value of the regeneration circuit operating rate shows the operating rate of regeneration circuit. The display range is $0.01 \% \sim 99.99 \%$.

- The actual regeneration power PM can be calculated from this monitor value by following equation.
Input Supply Voltage : In case of AC200V specification
Regeneration power PM $(\mathrm{W})=\frac{400(\mathrm{~V}) \times 400(\mathrm{~V})}{\text { Regeneration resistance }(\Omega)} \times \frac{\text { regeneration circuit operating rate }(\%)}{100(\%)}$

Input Supply Voltage : In case of AC100V specification
Regeneration power PM $(\mathrm{W})=$
$\frac{200(\mathrm{~V}) \times 200(\mathrm{~V})}{\text { Regeneration resistance }(\Omega)} \times \frac{\text { regeneration circuit operating rate (\%) }}{100(\%)}$
alculation Example

Servo Amplifier Model Number :	RS1L01AA*
[With built-in regeneration resistance/Input Supply Voltage:AC200V Specification]	
Regeneration resistance value :	[Built-in Regeneration Resistance]
Monitor Value :	[RegP]
Regeneration power PM $(\mathrm{W})=$	$\frac{400(\mathrm{~V}) \times 400(\mathrm{~V})}{100(\Omega)} \times \frac{0.12(\%)}{100(\%)}=1.92(\mathrm{~W})$

(to The regeneration power calculated from this monitor value continues to be the target until the end of operations. Regeneration power varys with the voltage fluctuation of the input power supply and changes across the ages of the servo amplifier and the loading device.

[^5]
Materials Selection Details

［External Regenerative Resistor］
－Selection of Optional External Regenerative Resistor
－You can select the combination of external regenerative resistors based on effective regenerative power ［PM］sought by the regeneration calculation．

Amplifier Model Number	［PM］	Up to 10W	Up to 30W	Up to 55W	Up to 60W	Up to 110W	Below 220W	$220 \mathrm{~W}$ and over
RS1口01	Resistor Sign	A×1	$\mathrm{C} \times 1$	E×1	$\mathrm{D} \times 2$	$\mathrm{F} \times 2$	E×4	Contact
	Connection Number	III	III	III	IV	IV	VI	
RS1口03	Resistor Sign	$\mathrm{B} \times 1$	D×1	F×1	$\mathrm{C} \times 2$	E×2	F×4	－Contact
	Connection Number	III	III	III	V	V	VI	

Amplifier Model Number	［PM］	Up to 55W	Up to 125W	Up to 250W	Below 500W	500W and over
RS1口05	Resistor Sign	G×1	$\mathrm{H} \times 1$	1×2	$\mathrm{H} \times 4$	Contact
	Connection Number	III	III	IV	VI	

Amplifier Mode Number	［PM］	Up to 125W	Up to 250W	Below 500W	$\begin{aligned} & \hline 500 \mathrm{~W} \\ & \text { and over } \end{aligned}$
RS1ロ10	Resistor Sign	I $\times 1$	H×2	I $\times 4$	Contact
	Connection Number	III	V	VI	

Amplifier Model Number	［PM］	Up to 125W	Up to 250W	Below 500W	$\begin{aligned} & \text { 500W } \\ & \text { and over } \end{aligned}$
RS1ロ15	Resistor Sign	J×1	K $\times 2$	J×4	Contact
	Connection Number	III	V	VI	

Amplifier Model Number	［PM］	Up to 250W	Below 500W	500W and over
RS1ロ30	Resistor Sign	L×1	L×2	Contact
	Connection Number	III	V	

The above resistor sign of a combination of an external regenerative resistor correspond to the following table．
Please select a resistor model name corresponding to a resistor sign．
（4）The above connection number of a combination of an external regenerative resistor is on the next page． Please connect based on the connection number．
（0）
The external regeneration resistors are installed with the condition of that regeneration electric power utilization rate can reach maximum 25% ．
（t）Forced－cooling by using an air－cooling fan raise rate of regeneration electric power utilization up to around 50% ．

Resistor Sign	Resistor Model Number	Resistance Value	Thermostat Detection temperature （Contact specification）	Permissible Effective Power ［PM］	Outline Drawing
A	REGIST－080W100B	100Ω	$135^{\circ} \mathrm{C} \pm 7^{\circ} \mathrm{C}$ （b Contact）	10W	Refer to＇Materials 15＇
B	REGIST－080W50B	50Ω		10W	
C	REGIST－120W100B	100Ω		30W	
D	REGIST－120W50B	50Ω		30W	
E	REGIST－220W100B	100Ω		55W	
F	REGIST－220W50B	50Ω		55W	
G	REGIST－220W20B	20Ω		55W	
H	REGIST－500W20B	20Ω	$100^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ （b Contact）	125W	Refer to＇Materials16＇
I	REGIST－500W10B	10Ω		125W	
J	REGIST－500W7B	7Ω		125W	
K	REGIST－500W14B	14Ω		125W	
L	REGIST－1000W6R7B	6.7Ω	$140^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ （b Contact）	250W	Refer to＇Materials17＇

- Connection of Regenerative Resistance

4 Please make sure to install the external regenerative resistor with twisted wires and use as a short wire which is up to 5 meters long as possible.

Un Use nonflammable electric wire or perform non-combustible processing (silicon tube, etc.) for connecting cable and wired, and install wiring so as to not come in contact with the built-in unit .
Please make sure to change the set-up of "System Parameter" and "Regenerative Resistance Selection" in line with the kind of regenerative resistor you connect.

Connection of the Thermostat of a Regenerative Resistor

Example of standard setting: Connect the Thermostat of Regenerative Resistor to CONT 4
Set CONT 4 [parameter Group A 03] at standard setting [12H:EXT-E]

- Connection Number of External Regenerative Resistor combination

Connection I	Connection II
Connection III	ConnectionIV [×2] Series Connection
Connection V [×2] Parallel Connection	ConnectionVI [×4] Series/Parallel Connection

Materials

- Protection Function of Regenerative Resistance

With the R series servo amplifier, the regenerative resistance protection function is specified by parameter selections. Appropriate protection for regenerative resistance is applied by setting parameters according to the type of regenerative resistance to be connected. Set the appropriate parameters by following the instructions given below.

- The protection functions are divided into three main types:
(1) Protection for a short-time, high load factor (using built-in or external regenerative resistance): An error is detected when the power absorption of regenerative resistance is extremely high over a short time period (100 msec to 10 seconds). A 'Regenerative Error' alarm ("ALM_43") is issued when this error is detected.
(2) Protection when allowable power absorption is exceeded for long time (using built-in regenerative resistance): An error is detected when the power absorption of the built-in regenerative resistance exceeds the allowable power absorption over a long time period (from a few seconds to a few minutes). An 'Internal Overheat' alarm ("ALM_54") is issued when this error is detected.
(3) Protection during thermostat operation of the external regenerative resistor: An error is detected when the external trip function is started. An 'External error / external trip' alarm ("ALM_55") is issued when this error is detected.

The two parameters requiring settings are given below.

1	Regenerative resistance selection	Regenerative resistance built-in type [0B]
2	External trip input function	General parameter [Include 12:_EXT-E into any of GroupA 00 to 03]

- Relationship between parameter settings and protection functions

Regenerative resistance in use		Parameter setting		Protection function operation		
Resistor	Thermostat	Regenerative resistance selection	External trip input function	Regenerative error [ALM_43]	Internal overheat [ALM_54]	External Alarm External Trip [ALM_55]
Not Connecting	-	$00:$ Not_Connect	-	Invalid	Invalid	-
Built-in Regenerative Resistance	-	01:_Built-in_R	-	Valid	Valid	-
External Regenerative Resistance	-	02:_External_R	Valid	Invalid	-	
External Regenerative Resistance	Connect to servo amplifier	02:_External_R	Setting	Valid	Invalid	Valid

(L) Make appropriate settings to regenerative resistance [System parameter/Page0B] when using built-in regenerative resistance.
If these parameter settings are incorrect, normally detected errors related to built-in regenerative resistance may not be detected, possible causing the burning/fuming of regenerative resistance.
(t) The built-in/ external regenerative resistance may generate heat even if the overheat alarm etc. has not been generated.
Do not touch the servo amplifier for 30 minutes after power is disconnected in the case of a power failure, as there is a risk of burn, etc.
(4) Incorrect parameter settings may cause irregular operation of the protection functions. Upon an alarm, confirm its cause and adjust the settings appropriately.

To The place where corrosive gas has occurred, and when there is much dust, insulated degradation, corrosion, etc.may arise. There fore be careful of an attachment place.

R Arrangement of the external regeneration resistor should open an interval so that it is not influenced by generation of heat from other parts.

Materials Selection Details

[External Regenerative Resistor Dimension]

- External Dimension of Regenerative Resistor

	Model number	Thermostat Detection temperature (Contact specification)
1	REGIST-080W100B	$135^{\circ} \mathrm{C} \pm 7^{\circ} \mathrm{C}$ (Normal close contact)
2	REGIST-080W50B	$135^{\circ} \mathrm{C} \pm 7^{\circ} \mathrm{C}$ (Normal close contact)

Mass:0.19kg

	Model number	Thermostat Detection temperature (Contact specification)
1	REGIST-120W100B	$135^{\circ} \mathrm{C} \pm 7^{\circ} \mathrm{C}$ (Normal close contact)
2	REGIST-120W50B	$135^{\circ} \mathrm{C} \pm 7^{\circ} \mathrm{C}$ (Normal close contact)

Mass:0.24kg

Model number Thermostat Detection temperature (Contact specification) 1 REGIST-220W50B $135^{\circ} \mathrm{C} \pm 7^{\circ} \mathrm{C}$ (Normal close contact) 2 REGIST-220W20B $135^{\circ} \mathrm{C} \pm 7^{\circ} \mathrm{C}$ (Normal close contact) 3 REGIST-220W100B $135^{\circ} \mathrm{C} \pm 7^{\circ} \mathrm{C}$ (Normal close contact) Mass: 0.44 kg

Materials Selection Details

[External Regenerative Resistor Dimension]

Materials Selection Details

[External Regenerative Resistor Dimension]

(b)

Connection Diagram

Materials Global Standards [Global standards conformity]

■ Outline of Global standards conformity

- RS1 servo amplifier conforms to the international standards below.

Mark	International standards	Standard number	Certification Organization
$\mathrm{C} \mathrm{~F}^{\circledR} \text { US }$	UL standard CSA standard	UL508C (File No.E179775)	UL (Underwriters Laboratories inc.)
	EN standard	$\begin{gathered} \text { EN50178 } \\ \text { EN61000-6-2 } \\ \text { EN61800-3 } \end{gathered}$	TÜV (TÜV Product Service Japan, Ltd.)

- Q and R servomotor conforms to the international standards below.

Display	International standards	Standard number	Certification Organization
	UL standard	UL1004 UL1446 (File No.E179832)	UL (Underwriters Laboratories inc.)
IUV	EN standards	$\begin{aligned} & \text { IEC-34-1 } \\ & \text { IEC34-5 } \end{aligned}$	TÜV (TÜV Product Service Japan, Ltd.)

For products conforming to international standards, some specifications may differ from the standard product due to prerequisites necessary for obtaining approval. Contact the manufacturer for more details.

The file number of UL is available at the UL homepage: http://www.ul.com/database/.
0
Please contact your dealer or sales representative if you need the above certification.

- Precautions for conformity standards
(1) Make sure to use servo amplifier and servo motor in a proper combination. Check "Section 1 : Prior to use --- Servo amplifier type number.
(2) Make sure to install the servo amplifier in your control panel in an environment where the pollution level specified in EN50178 and IEC664 is no less than 2 (polution level 1, 2). The control panel installation configuration (under IP54) must exclude exposure to water, oil, carbon, dust, etc.
(3) The servo amplifiers must be used under the conditions specified in overvoltage categoryIII, EN50178. For the interface, use a DC power supply with reinforced and insulated input and outputs.
(4) Always ground the protective earth terminals of the servo amplifier to the power supply earth. (©)
(5) When connecting grounding wire to the protective earth terminal, always connect one wire in one terminal; never connect jointly with multiple wires or terminals.
(6) When connecting the leakage stopper, make sure to connect the protective earth terminal to the power supply earth. (©)
(7) Connect earthing wire by using a crimping terminal with insulated tube, so that the connected wire will not touch the neighboring terminals.

(8) For wire relays, use a fixed terminal block to connect wires; never connect wires directly.

(9) Connect an EMC filter to the input power supply of the unit.
(10) Use an EN/ IEC-standard compatible no-fuse circuit breaker and electromagnetic contactor.

Materials Global Standards [Global standards conformity]

- Compliance with EC Directives

Our company has performed the requisite low voltage and EMC testing in accordance with EC Directives related to CE marking through a separate, third-party certifying authority.

Directive classification	Classification	Test	Test standard
Low voltage Directive (Servo amplifier)	-	-	EN50178: 1997
EMC Directive (Servo amplifier / servo motor)	Emission	Conducted emission	EN55011: A1/1999
		Radiated emission	EN55011: A1/1999
	Immunity test	Electrostatic discharge immunity	EN61000-4-2: A2/2001
		Radiated electromagnetic field immunity	EN61000-4-3: A2/2001
		Electrical first transient/ burst immunity	EN61000-4-4: A2/2001
		Conducted disturbance immunity	EN61000-4-6: A1/2001
		Surge immunity	EN61000-4-5: A1/2001
		Voltage Dips \& Interruptions immunity	EN61000-4-11: A1/2001
		Adjustable speed electrical power drive system	EN61800-3/1996 :A11/2000
Low voltage Directive (Servo motor)	-	Rotating electrical machines- Part1: Rating and performance	IEC-34-1
		Rotating electrical machines-Part5:Classification of degrees of protection provided by enclosures of rotating electrical machines(IP code)	IEC34-5
		Rotating electrical machines-Prat9: Noise limits	IEC34-9

[^6]
Materials Global Standards [Global standards conformity]

- Precautions for EMC Directives

Use the following guidelines below for the RS1 servo system in order to conform the customer's equipment and devices to the EMC Directives.
(1) A metallic material must be used for the door and main body of control panel.
(2) The joints of the top and side panels must be masked and welded.
(3) Parts joined with screws must be welded to prevent noise from leaking out from joints.
(4) When joining parts with screws or spot welding, the welding space must be within 10 cm .
(5) Use an EMI gasket so that there is zero clearance between the door and control panel.
(6) Install EMI gasket uniformly to the contact points between door and main body of control panel.
(7) Perform conductivity processing on the EMI gasket, door and main body of control panel to confirm their conductivty.
(8) Ground the noise filter frame to the control panel.
(9) Ground the servo amplifier chassis provided by the customer.
(10) Use shield cables for the motor power line and encoder cable.
(11) Ground the shield of motor power wire and encoder cable to the control panel with the clamp.
(12) Ground and clamp the shield of motor power line and encoder cable to the frame of the servo amplifier.
(13) Use a conducting metal P clip or U clip to ground and clamp the shield wire, and fix it directly with metal screws. Do not ground by soldering electric wire to the shield wire.

Grounding by U clip or P clip

Grounding by soldering
(14) Wrap the zero-phase reactor four times around the primary side of the noise filter.

(15) Wire the servo amplifier at a short distance from the secondary side of noise filter.
(16) Wire the primary side and secondary side of the noise filter separately.

Materials

- Installation of noise filter and servo amplifier

- Single-phase power supply

Always ground the frame of the noise filter.
Install wiring by separating the primary and secondary wiring of the noise filter as much as possible.
40
Keep wiring from the noise filter to servo amplifier as short as possible.
Connect the servo amplifier to the secondary side of noise filter.

Materials Global Standards [Global standards conformity]

- Recommended prevention components
- Noise filter

Model Number	Specifications	Manufacturer
3SUP-HK30-ER-6B	Rated voltage :Line-Line 500 V Rated current:30 A	Okaya Electric Industries Co. Ltd.
3SUP-HK50-ER-6B	Rated voltage :Line-Line 500 V Rated current:50 A	Okaya Electric Industries Co. Ltd.
RF3020-DLC	Rated voltage : Line-Line 440 to 550 V Rated current:20 A	RASMI ELECTRONICS LTD.
RF3030-DLC	Rated voltage :Line-Line 440 to 550 V Rated current:30 A	RASMI ELECTRONICS LTD.
RF3070-DLC	Rated voltage: Line-Line 440 to 550 V Rated current:70 A	RASMI ELECTRONICS LTD.
RF1010-DLC	Rated voltage :Line-Neutral 250 V Rated current:10 A	RASMI ELECTRONICS LTD.
FS5559-35-33	Rated voltage: Line-Line 480 V Rated current:35 A	SCHAFFNER

- Toroidal core

Model Number	External diameter	Internal diameter	Manufacturer
$251-211$	65 mm	36 mm	SCHAFFNER

Okaya Electric Industries Co. Ltd.: http://www.okayaelec.co.jp/
RASMI ELECTRONICS LTD. : http://www.rasmi.com/
SCHAFFNER : http://www.schaffner.com/

Please inquire the order for the RASMI product of our company.

Implementation of check test

EMC testing of equipment and devices which the RS1 servo system is built-in should meet the emission and immunity (electromagnetic compatibility) standards for the usage environment / and operating conditions.

It is necessary to follow the instructions mentioned above and conduct a final conformity check test after review.

Materials, outline dimensions

Materials, outline dimensions

10max

Materials, outline dimensions

MODEL	LE	LH	LC	LZ1	LZ2	LR	S	Q	QA	QK	W	T	U	KB1	α	β	γ	QE	LT	IE	IF	IL1	IL2
Q1AA10100 ${ }^{\text {a }}$ -	3	130	100	9	-	45	$\begin{gathered} 0 \\ 22-0.013 \end{gathered}$	40	3	32	$\begin{gathered} 0 \\ 6-0.030 \end{gathered}$	6	2.5	84	0.02	0.08	0.08	M6	20	-	-	-	-
Q1AA10150 $\triangle \square \bigcirc$														109									
Q1AA10200 $\triangle \square \bigcirc$														134									
Q1AA10250 ${ }^{\text {a }}$ -														159									
Q1AA12100 $\triangle \square \bigcirc$	3	162	120	9	-	45		40	3	32	$\begin{gathered} 0 \\ 6-0.030 \end{gathered}$	6	2.5	76	0.02	0.08	0.08			-	-	-	-
Q1AA12200 $\triangle \square \diamond$							22-0.013							113									
Q1AA12300 $\triangle \square \bigcirc$						55	$\begin{gathered} \hline 0 \\ 28-0.013 \\ \hline \end{gathered}$	50	3	42	$\begin{gathered} 0 \\ 8-0.036 \\ \hline \end{gathered}$	7	3	150				M8	25				
Q1AA13300 $\triangle \square \bigcirc$	4	165	130	9	M6	55	$\begin{gathered} 0 \\ 28-0.013 \end{gathered}$	50	3	42	$\begin{gathered} 0 \\ 8-0.036 \end{gathered}$	7	3	117	0.02	0.08	0.08	M8	25	-	-	-	-
Q1AA13400 $\triangle \square \diamond$														144									
Q1AA13500 $\triangle \square \diamond$														181									
Q1AA18450 $\triangle \square \bigcirc$	3	230	180	13.5	M8	65	$\begin{gathered} 0 \\ 35-0.016 \\ \hline \end{gathered}$	60	3	50	$\begin{gathered} 0 \\ 10-0.036 \\ \hline \end{gathered}$	8	3	200	0.02	0.08	0.08	M8	25	124	50	93	50
Q1AA18750 $\triangle \square \bigcirc$						79	$\begin{gathered} 0 \\ 42-0.016 \\ \hline \end{gathered}$	75	3	67	$\begin{gathered} 0 \\ 12-0.043 \end{gathered}$	8	3	291				M10	25	124	50	85	145

Note 1) Connector becomes a waterproof specification when intuition is combined, and use the connector of the waterproof specification forthe receiving side plug for IP67, please.

Note 2) All the brake connectors become JL04V-2E70SL-3PE-B for CE of the A DC24V brake.

Note 1) If an oil seal is needed for Q2AA04*, the overall motor length is different.

	Wire－saving incremental encoder ［PP031］					Battery backup method absolute encoder［PA035C］					Connector Note 1					$\begin{aligned} & \text { [PP } \\ & 031] \end{aligned}$	$\begin{gathered} {[\mathrm{PA}} \\ 035 \mathrm{C}] \end{gathered}$			
	Without Brake		With Brake			Without Brake		With Brake			Motor grounding	Brake（only when brake is instalied）Note2								
MODEL	LL	KB2	LL	KB2	KB3	LL	KB2	LL	KB2	KB3	MS3102A	JL04V－2E	LG	KL1	KL2	KL3	KL3	LA	LB	
Q2AA10100 $\triangle \square \bigcirc$	196	77	231	113	51	207	90	243	125	51	20－15P	10SL－3PE－EB	10	78	19	67	63	115	$\begin{gathered} 0 \\ 95-0.035 \end{gathered}$	
Q2AA10150 $\triangle \square \diamond$	226		261			237		273												
Q2AA13050 $\triangle \square \diamond$	135	67	171	103	－	150	84	186	120	－	24－11P		12	98	21	80	63	145	$\begin{gathered} 0 \\ 110-0.035 \end{gathered}$	
Q2AA13100 $\triangle \square \bigcirc$	152		188			167		203												
Q2AA13150 $\triangle \square \diamond$	169		205			184		220												
Q2AA13200 $\triangle \square \bigcirc$	186		226	107	－	201		241	124	－										
Q2AA18200 $\triangle \square \diamond$	171	67	221	117	－	186	84	236	134	－	24－11P		16	123	21	80	63	200	$\begin{gathered} 0 \\ 114.3-0.03 \\ 5 \end{gathered}$	
Q2AA18350 $\triangle \square \bigcirc$	203		253			218		268												
Q2AA18450 $\triangle \square \diamond$	218		268			234		284												
Q2AA18550 $\triangle \square \diamond$	282	72	332	122	54	298	89	348	139	54	32－17P	10SL－3PE－EB	19	144	22	80	63	200	$\begin{array}{\|c} \hline 0 \\ 114.3-0.03 \\ 5 \end{array}$	
Q2AA18750 $\triangle \square \bigcirc$	332		382			348		398												
Q2AA22250 $\triangle \square \diamond$	158	65	196	104	44	171	80	210	119	44	24－11P	10SL－3PE－EB	16	141	21	80	63	235	$\begin{gathered} 0 \\ 200-0.046 \end{gathered}$	
Q2AA22350 $\triangle \square \diamond$	171		209			184		223												
Q2AA22450 $\triangle \square \bigcirc$	189		227			202		241												
Q2AA22550 \triangle－	252	82	309	140	82	265	97	323	155	82			19							
Q2AA22700 $\triangle \square \diamond$	310		368			323		381												
Q2AA2211K $\triangle \square \diamond$	335	73	393	131	61	355	94	406	145	61	32－17P	10SL－3PE－EB	19	162	22	80	63	235	$\begin{gathered} 0 \\ 200-0.046 \end{gathered}$	
Q2AA2215K $\triangle \square \diamond$	394		452			414		465												

MODEL	LE	LH	LC	LZ1	LZ2	LR	S	Q	QA	QK	W	T	U	KB1	α	β	Y	QE	LT	IE	IF	IL1	IL2
Q2AA10100 $\triangle \square \diamond$	3	130	100	9	－	45	$\begin{gathered} 0 \\ 22-0.013 \end{gathered}$	40	3	32	$\begin{gathered} 0 \\ 6-0.030 \end{gathered}$	6	2.5	98	0.02	0.08	0.08	M6	20	－	－	－	
Q2AA10150 \triangle－\diamond														128									－
Q2AA13050 \triangle－${ }^{\text {d }}$	4	165	130	9	M6	55	$\begin{gathered} 0 \\ 22-0.013 \end{gathered}$	50	3	42	$\begin{gathered} 0 \\ 6-0.030 \end{gathered}$		2.5	47	0.02	0.08	0.08	M6	20	－	－	－	－
Q2AA13100 \triangle 口												6		64									
Q2AA13150 \triangle 口														81									
Q2AA13200 ${ }^{\text {a }}$－${ }^{\text {d }}$							$\begin{gathered} \hline 0 \\ 28-0.013 \\ \hline \end{gathered}$				$\begin{gathered} 0 \\ 8-0.036 \end{gathered}$	7	3	98				M8	25				
Q2AA18200 \triangle 口	3	230	180	13.5	M8	65	$\begin{gathered} 0 \\ 35-0.016 \end{gathered}$	60	3	50	$\begin{gathered} 0 \\ 10-0.036 \end{gathered}$	8	3	83	0.02	0.08	0.08	M8	25	－	－	－	－
Q2AA18350 $\triangle \square \diamond$														115						124	50	61	20
Q2AA18450 \triangle－${ }^{\text {d }}$														130									35
Q2AA18550 $\triangle \square \bigcirc$	3	230	180	13.5	M8	79	$\begin{gathered} 0 \\ 42-0.016 \end{gathered}$	75	3	67	$\begin{gathered} 0 \\ 12-0.043 \end{gathered}$	8	3	189	0.02	0.08	0.08	M10		124		85	50
Q2AA18750 \triangle－${ }^{\text {d }}$														239					25		50		100
Q2AA22250 \triangle 口		270	220	13.5	M10	65	$\begin{gathered} 0 \\ 35-0.016 \end{gathered}$	60	3	50	$\begin{gathered} 0 \\ 10-0.036 \end{gathered}$		3	71	0.02	0.08	0.08	M8	25	142	60	50	10
Q2AA22350 $\triangle \square$－	4											8		84									20
Q2AA22450 \triangle－${ }^{\text {d }}$														102									40
Q2AA22550 \triangle－						79	$\begin{gathered} 0 \\ 55-0.019 \end{gathered}$	75		67	$\begin{gathered} 0 \\ 16-0.043 \end{gathered}$	10	4	149	0.03	0.08	0.10	M10				55	50
Q2AA22700 \triangle－${ }^{\text {d }}$														207									110
Q2AA2211K $\triangle \square \diamond$	4	270	220	13.5	M10	79	$\begin{gathered} 0 \\ 55-0.019 \end{gathered}$	75	3	67	$\begin{array}{\|c\|} 0 \\ 16-0.043 \end{array}$	10	4	241	0.03	0.08	0.10	M10	25	142	60	69	120
Q2AA2215K $\triangle \square \diamond$														300									180

Note 1）Connector becomes a waterproof specification when intuition is combined，and use the connector of the waterproof specification forthe receiving side plug for IP67，please．
Note 2）All the brake connectors become JL04V－2E70SL－3PE－B for CE of the A DC24V brake．

	Without Oil Seal		Without Oil Seal Note1										
	Battery backup method absolute encoder		Battery backup method absolute encoder										
	Without Brake	With Brake	Without Brake	With Brake									
MODEL	LL	LL	LL	LL	LG	KL	LA	LB	LE	LH	LC	LZ	LR
R2口A04003 $\triangle \triangleright$	51.5	87.5	56.5	92.5	5	35.3	46	$\begin{gathered} 0 \\ 30-0.021 \end{gathered}$	2.5	56	40	$\begin{gathered} 2-\phi \\ 4.5 \end{gathered}$	25
R2口A04005 $\triangle \triangleright$	56.5	92.5	61.5	97.5									
R2EA04008 $\triangle \square \checkmark$	72	108	77	113									
R2AA04010 $\triangle \square$													
R2口A06010 $\triangle \triangleright$	58.5	82.5	65.5	89.5	6	44.6	70	$\begin{gathered} 0 \\ 50-0.025 \end{gathered}$	3	82	60	$\begin{gathered} 4-\phi \\ 5.5 \end{gathered}$	25
R2口A06020 $\triangle \square \diamond$	69.5	97.5	76.5	104.5									30
R2AA08020 $\triangle \square \bigcirc$	66.3	102	73.3	109	8	54.4	90	$\begin{gathered} 0 \\ 70-0.030 \end{gathered}$		108	80	$\begin{gathered} 4-\phi \\ 6.6 \end{gathered}$	
R2AA06040 \triangle－\diamond	95.5	123.5	102.5	130.5	6	44.6	70	$\begin{gathered} 0 \\ 50-0.025 \\ \hline \end{gathered}$		82	60	$\begin{gathered} \hline 4-\phi \\ 5.5 \\ \hline \end{gathered}$	
R2AA08040 $\triangle \square$	78.3	114	85.3	121	8	54.4	90	$\begin{gathered} 0 \\ 70-0.030 \end{gathered}$	3	108	80	$\begin{gathered} 4-\phi \\ 6.6 \end{gathered}$	
R2AA08075 \triangle－	107.3	143	114.3	150									40
R2AAB8100 $\triangle \square \diamond$	137	163	137	163		59.4	100	$\begin{gathered} 0 \\ 80-0.03 \end{gathered}$		115.5	86		35

							Absolute
MODEL	S	Q	QE	LT	D1	D2	D3
R2AA04003 \triangle－\diamond	$\begin{gathered} 0 \\ 6-0.008 \\ \hline \end{gathered}$	20	－	－	6	5	5
R2AA04005 \triangle－\diamond	$\begin{gathered} 0 \\ 8-0.009 \end{gathered}$						
R2EA04008 $\triangle \square \diamond$							
R2AA04010 \triangle 口							
R2口A06010 $\triangle \square \diamond$	$\begin{gathered} \hline 0 \\ 8-0.009 \\ \hline \end{gathered}$		－	－			
R2口A06020 $\triangle \square \diamond$	$\begin{gathered} 0 \\ 14-0.011 \end{gathered}$	25	M5	12			
R2AA08020 \triangle－\diamond							
R2AA06040 $\triangle \square \diamond$							
R2AA08040 $\triangle \square \diamond$			M5	12			
R2AA08075 \triangle－\diamond	$\begin{gathered} 0 \\ 16-0.011 \end{gathered}$	35					
R2AAB8100 \triangle－\diamond		30					

Note 1）If an oil seal is needed，the motor whole length differs．
Note 2）For the one without brake，there is no brake connector（or cable）attached．

MODEL	QA	QK	LZ1	LZ2	LE	LG	KL1	KL2	IE	IF	IL1	IL2
R2AA13050 \triangle 口 \diamond	3	42	9	2－M6	4	12	98	21	－	－	－	－
R2AA13120 \triangle－\diamond												
R2AA13200 \triangle ロ												
R2AA22500 \triangle ロ \diamond		50	13.5	4－M12		16	142		142	60	48	35

Materials Servo motor data sheet [Characteristics table]

Three-phase AC200V-input specification

Servo Motor model Q1AA			04003D	04005D	04010D	06020D	06040D	07075D	10100D
Servo Amplifier model RS1 \square			01*	01*	01*	01*	03*	03*	05*
*Rated output	P_{R}	kW	0.03	0.05	0.1	0.2	0.4	0.75	1
*Rated speed	N_{R}	min^{-1}	3000	3000	3000	3000	3000	3000	3000
*Maximum speed	$\mathrm{N}_{\text {max }}$	min^{-1}	5000	5000	5000	5000	5000	5000	5000
*Rated torque	TR	$\mathrm{N} \cdot \mathrm{m}$	0.098	0.159	0.318	0.637	1.27	2.38	3.19
*Continuous stall torque	T_{s}	$N \cdot m$	0.108	0.159	0.318	0.637	1.27	2.38	3.92
*Peak torque	TP	$\mathrm{N} \cdot \mathrm{m}$	0.322	0.477	0.955	1.91	3.82	7.16	10.5
*Rated current	I_{R}	Arms	0.49	0.80	1	1.5	2.9	4.5	6.5
*Continuous stall current	Is	Arms	0.53	0.80	1	1.5	2.9	4.5	7.8
*Peak current	I_{P}	Arms	2.2	2.9	3.6	5.8	10.5	15	24.5
Torque constant	K_{T}	$\mathrm{N} \cdot \mathrm{m} /$ Arms	0.220	0.23	0.360	0.49	0.510	0.61	0.55
Voltage constant for each phase	$\mathrm{K}_{\mathrm{E} \phi}$	$\mathrm{mV} / \mathrm{min}^{-1}$	7.68	8.0	12.6	17.2	17.8	21.4	19.3
Phase resistance	R_{ϕ}	Ω	15	8.1	7.6	2.5	1.3	0.63	0.34
*Rated power rate	Q_{R}	kW/s	9.60	18.8	43.4	28.7	65.3	89.6	78.9
Inertia (Including Wiring INC)	J_{M}	$\begin{gathered} \hline \mathrm{kg} \cdot \mathrm{~m}^{2}\left(\mathrm{GD}^{2} / 4\right) \\ \times 10-4 \end{gathered}$	0.01	0.0134	0.0233	0.141	0.247	0.636	1.29
Aluminium plate		mm	t6×250	t6×250	t6×250	t12×250	t12×250	t12×250	t20×400
Servo Motor model Q1AA			10150D	10200D	10250D	12100D	12200D	12300D	13300D
Servo Amplifier model RS1 \square			05*	10*	10*	05*	10*	10*	10*
*Rated output	P_{R}	kW	1.5	2	2.5	1	2	3	3
*Rated speed	N_{R}	min^{-1}	3000	3000	3000	3000	3000	3000	3000
*Maximum speed	$\mathrm{N}_{\text {max }}$	min^{-1}	4500	5000	5000	5000	5000	5000	4500
*Rated torque	TR	$\mathrm{N} \cdot \mathrm{m}$	4.79	6.37	7.97	3.19	6.37	9.55	9.5
*Continuous stall torque	Ts	$N \cdot m$	4.9	7.36	8.82	3.92	7.36	11	10.8
*Peak torque	T_{P}	$\mathrm{N} \cdot \mathrm{m}$	14.7	19.6	24.4	11	21	31	28.4
*Rated current	I_{R}	Arms	8.2	15.9	16.6	6.2	14.3	16.2	16.7
*Continuous stall current	Is	Arms	8.2	18	17.2	7.5	16.2	17.3	17.6
*Peak current	$\mathrm{IP}^{\text {P }}$	Arms	26.5	55	55	24.5	53	55	55
Torque constant	K_{T}	$\mathrm{N} \cdot \mathrm{m} /$ Arms	0.705	0.470	0.587	0.578	0.534	0.73	0.693
Voltage constant for each phase	$\mathrm{K}_{\mathrm{E} \phi}$	$\mathrm{mV} / \mathrm{min}^{-1}$	24.6	16.4	20.5	20.2	18.6	25.4	24.2
Phase resistance	R_{ϕ}	Ω	0.272	0.0860	0.104	0.190	0.07	0.082	0.087
*Rated power rate	Q_{R}	kW/s	143	189	240	45.2	93	143	184
Inertia (Including Wiring INC)	J_{M}	$\begin{gathered} \mathrm{kg} \cdot \mathrm{~m}^{2}\left(\mathrm{GD}^{2} / 4\right) \\ \times 10-4 \end{gathered}$	1.61	2.15	2.65	2.25	4.37	6.4	4.92
Aluminium plate		mm	t20×400	t20×470	t20×470	t20×400	t20×470	t20×470	t20×470

Servo Motor model Q1AA			13400D	13500D	18450M	18750H			
Servo Amplifier model RS1口			15*	15*	15*	30*			
*Rated output	P_{R}	kW	4	5	4.5	7.5			
*Rated speed	N_{R}	min^{-1}	3000	3000	1500	1500			
*Maximum speed	$\mathrm{N}_{\text {max }}$	min^{-1}	4500	4500	1500	3000			
*Rated torque	TR	$\mathrm{N} \cdot \mathrm{m}$	12.7	15.7	28.5	48			
${ }^{*}$ Continuous stall torque	Ts	$\mathrm{N} \cdot \mathrm{m}$	14.7	18.1	31.6	55			
*Peak torque	T_{P}	$\mathrm{N} \cdot \mathrm{m}$	39.2	47.6	105	125			
*Rated current	I_{R}	Arms	23.4	25.8	20	55			
*Continuous stall current	$\mathrm{I}_{\text {s }}$	Arms	26.4	27.5	22.2	60			
*Peak current	I_{p}	Arms	83	83	83	155			
Torque constant	$\mathrm{K}_{\text {T }}$	$\mathrm{N} \cdot \mathrm{m} /$ Arms	0.612	0.724	1.71	0.91			
Voltage constant for each phase	$\mathrm{K}_{\mathrm{E} \phi}$	$\mathrm{mV} / \mathrm{min}^{-1}$	21.4	25.3	59.6	31.7			
Phase resistance	R_{ϕ}	Ω	0.048	0.0461	0.129	0.021			
*Rated power rate	$Q_{\text {R }}$	kW/s	251	291	295	443			
Inertia (Including Wiring INC)	J_{M}	$\begin{gathered} \mathrm{kg} \cdot \mathrm{~m}^{2}\left(\mathrm{GD}^{2} / 4\right) \\ \times 10-4 \end{gathered}$	6.43	8.47	27.5	52			
Aluminium plate		mm	$\mathrm{t} 20 \times 470$	t20×540	t20×540	t20×540			

- Constants are values at the time of installing on the aluminum board in the table. They indicate 'thickness' \times 'side of square'.
- Items with * and velocity - torque characteristics indicate values after temperature rise saturation.

The others indicate values at $20^{\circ} \mathrm{C}$. Each value indicates TYP.

Materials Servo motor data sheet [Characteristics table]

- Constants are values at the time of installing on the aluminum board in the table. They indicate 'thickness' \times 'side of square'.
- Items with "*" and velocity - torque characteristics indicate values after temperature rise saturation. The others indicate values at $20^{\circ} \mathrm{C}$. Each value indicates TYP.

Materials Servo motor data sheet [Characteristics table]

3-phase AC200V-input specification

Servo Motor model NO. Q2AA			04006D	04010D	05005D	05010D	05020D	07020D	07030D
Servo Amplifier model NO. RS1]			01*	01*	01*	01*	01*	01*	01*
*Rated output	P_{R}	kW	0.06	0.1	0.05	0.1	0.2	0.2	0.3
*Rated speed	N_{R}	min^{-1}	3000	3000	3000	3000	3000	3000	3000
*Maximum speed	$\mathrm{N}_{\text {max }}$	min^{-1}	5000	5000	5000	5000	5000	5000	5000
*Rated torque	T_{R}	$\mathrm{N} \cdot \mathrm{m}$	0.191	0.318	0.159	0.318	0.637	0.637	0.955
${ }^{*}$ Continuous stall torque	T_{S}	$\mathrm{N} \cdot \mathrm{m}$	0.216	0.353	0.167	0.353	0.686	0.686	0.98
*Peak torque	T_{P}	$\mathrm{N} \cdot \mathrm{m}$	0.65	1	0.518	1.06	2.05	2.1	3.4
*Rated current	I_{R}	Arms	0.67	1.1	0.86	1.1	1.6	2.1	2.1
*Continuous stall current	Is	Arms	0.67	1.2	0.88	1.2	1.7	2.2	2.5
*Peak current	IP_{P}	Arms	2.7	3.6	3.3	4.3	5.9	7.5	7.9
Torque constant	K_{T}	$\mathrm{N} \cdot \mathrm{m} /$ Arms	0.314	0.325	0.21	0.33	0.435	0.34	0.519
Voltage constant for each phase	$\mathrm{K}_{\mathrm{E} \phi}$	$\mathrm{mV} / \mathrm{min}^{-1}$	10.97	11.34	7.26	11.4	15.2	11.8	18.1
Phase resistance	R_{ϕ}	Ω	11.3	6.77	4.72	4.05	3.24	1.88	2.22
*Rated power rate	Q_{R}	kW/s	6.46	11.8	3.78	7.78	16.2	10.6	20.3
Inertia (Including Wiring INC)	J_{M}	$\mathrm{kg} \cdot \mathrm{m}^{2}\left(\mathrm{GD}^{2} / 4\right) \times 10^{-4}$	0.057	0.086	0.067	0.13	0.25	0.38	0.45
Aluminium plate		mm	t6 $\times 250$	t6×250	t6 $\times 250$	t6 $\times 305$	t6 $\times 305$	t6 $\times 305$	t6 $\times 305$

Servo Motor model NO. Q2AA			07040D	07050D	08050D	08075D	08100D	10100H	10150H
Servo Amplifier model NO. RS1 \square			03*	03*	03*	05*	05*	05*	05*
*Rated output	P_{R}	kW	0.4	0.5	0.5	0.75	1	1	1.5
*Rated speed	N_{R}	min^{-1}	3000	3000	3000	3000	3000	2000	2000
*Maximum speed	$\mathrm{N}_{\text {max }}$	min^{-1}	5000	5000	5000	5000	5000	3500	3000
*Rated torque	T_{R}	$\mathrm{N} \cdot \mathrm{m}$	1.273	1.59	1.589	2.387	3.18	5	7.2
*Continuous stall torque	T_{S}	$\mathrm{N} \cdot \mathrm{m}$	1.372	1.85	1.96	2.941	3.92	6	8
*Peak torque	T_{P}	$\mathrm{N} \cdot \mathrm{m}$	4.1	5.2	6.56	9	12.5	16.6	20.5
*Rated current	I_{R}	Arms	3.0	4.3	3.7	5.9	6	6.8	8.6
*Continuous stall current	I_{S}	Arms	3.1	5.0	4.3	7	6.9	8.1	9.4
*Peak current	I_{P}	Arms	12	15	15	23.7	25	24.5	25.5
Torque constant	K_{T}	$\mathrm{N} \cdot \mathrm{m} /$ Arms	0.482	0.442	0.52	0.441	0.59	0.814	0.94
Voltage constant for each phase	$\mathrm{K}_{\mathrm{E} \phi}$	$\mathrm{mV} / \mathrm{min}^{-1}$	16.8	15.4	18.1	15.4	20.5	28.4	32.7
Phase resistance	R_{ϕ}	Ω	1.26	0.8	0.800	0.358	0.410	0.477	0.34
*Rated power rate	Q_{R}	kW/s	21.6	27.3	19.4	27.5	37.0	46.0	65
Inertia (Including Wiring INC)	J_{M}	$\mathrm{kg} \cdot \mathrm{m} 2(\mathrm{GD} 2 / 4) \times 10^{-4}$	0.75	0.85	1.3	2.07	2.7	5.4	8.0
Aluminium plate		mm	t6×305	t6 $\times 305$	t6 $\times 305$	t6 $\times 305$	t20×305	t20 $\times 400$	t20×400

Servo Motor model NO. Q2AA			13050H	13100H	13150H	13200H	18200H	18350H	18450H
Servo Amplifier model NO. RS1■			03*	05*	05*	10*	10*	15*	15*
*Rated output	P_{R}	kW	0.5	1.0	1.5	2	2	3.5	4.5
*Rated speed	N_{R}	min^{-1}	2000	2000	2000	2000	2000	2000	2000
*Maximum speed	$\mathrm{N}_{\text {max }}$	min^{-1}	3500	3000	3500	3500	3500	3500	3000
*Rated torque	T_{R}	$N \cdot m$	2.5	5	7.5	9.55	9.5	16.7	21.5
*Continuous stall torque	T_{S}	$N \cdot m$	3	6	9	12	12	21.1	27.1
*Peak torque	T_{P}	$\mathrm{N} \cdot \mathrm{m}$	7.1	15	20.3	30.5	31	55	70
*Rated current	I_{R}	Arms	4.6	7	8.7	13.1	15	22.6	24
*Continuous stall current	I_{s}	Arms	5.2	8.3	10.2	16.3	18	28	29
*Peak current	I_{P}	Arms	15	23.7	26.5	48	55	83	81
Torque constant	K_{T}	$\mathrm{N} \cdot \mathrm{m} /$ Arms	0.607	0.803	0.981	0.822	0.75	0.840	1.04
Voltage constant for each phase	$\mathrm{K}_{\mathrm{E} \phi}$	$\mathrm{mV} / \mathrm{min}^{-1}$	21.2	28.0	34.2	29	25.9	29.3	36.4
Phase resistance	R_{ϕ}	Ω	0.442	0.276	0.266	0.128	0.075	0.048	0.044
*Rated power rate	Q_{R}	kW/s	22.3	46	64	78	45.7	73	84
Inertia (Including Wiring INC)	J_{M}	$\begin{gathered} \mathrm{kg} \cdot \mathrm{~m}^{2}\left(\mathrm{GD}^{2} / 4\right) \\ \times 10^{-4} \end{gathered}$	2.8	5.4	7.94	12	20	38	55
Aluminium plate		mm	t20 $\times 305$	t20 $\times 400$	t20 $\times 400$	t20 $\times 470$	t20 $\times 470$	t20 $\times 470$	t20 $\times 470$

- Items with *(of the previous page; 39) and velocity - torque characteristics indicate values after temperature rise saturation. The others indicate values at $20^{\circ} \mathrm{C}$. Each value indicates TYP.
The constants shown above are the values when installed in heat releasing alminum plate, and indicate (thickness) x (one side length of squre). Items marked with "*" and velocity-torque characteristic show the values after increase-in-temperature saturated. The other items show the values at $20^{\circ} \mathrm{C}$. Each value shows TYP. value.

Materials Servo motor data sheet [Characteristics table]

Servo Motor model Q2AA			18550R	22250 H	22350H	22450R	22550B	22700S		
Servo Amplifier model RS1 \square			15*	10*	15*	15*	15*	15*		
*Rated output	P_{R}	kW	5.5	2.5	3.5	4.5	5.5	7		
*Rated speed	N_{R}	min^{-1}	1500	2000	2000	2000	1500	1000		
*Maximum speed	$\mathrm{N}_{\text {max }}$	min^{-1}	2500	3500	3000	2500	2000	1000		
*Rated torque	TR	$\mathrm{N} \cdot \mathrm{m}$	35	12	17	21.5	35	67		
*Continuous stall torque	T	$\mathrm{N} \cdot \mathrm{m}$	37.3	13.5	22	32	42	70		
*Peak torque	T_{P}	$\mathrm{N} \cdot \mathrm{m}$	88	30	50	70	90	150		
*Rated current	I_{R}	Arms	32.2	19.6	23.3	23	30	34		
*Continuous stall current	$\mathrm{I}_{\text {S }}$	Arms	33.7	21.8	29.8	33	35.1	34		
*Peak current	I_{P}	Arms	83	55	78	83	79.7	83		
Torque constant	K_{T}	$\mathrm{N} \cdot \mathrm{m} /$ Arms	1.24	0.685	0.814	1.06	1.32	2.13		
Voltage constant for each phase	$\mathrm{K}_{\mathrm{E} \phi}$	$\mathrm{mV} / \mathrm{min}^{-1}$	43.2	23.9	28.4	37.1	46.0	74.5		
Phase resistance	R_{ϕ}	Ω	0.039	0.0735	0.0559	0.0497	0.0464	0.057		
*Rated power rate	Q_{R}	kW/s	180	44.7	61.1	68.5	129	243		
Inertia (Including Wiring INC)	J_{M}	$\mathrm{kg} \cdot \mathrm{m}^{2}\left(\mathrm{GD}^{2} / 4\right) \times 10^{-4}$	69	32.2	47.33	67.45	95	185		
Aluminium plate		mm	t20×540	t20×470	t20×470	t20×470	t20×540	t20×540		

Servo Motor model Q2AA			18550H	18750L	2211 KV	2215KV		
Servo Amplifier model RS1 \square			30*	30*	30*	30*		
*Rated output	P_{R}	kW	5.5	7.5	11	15		
*Rated speed	N_{R}	min^{-1}	1500	1500	1500	1500		
*Maximum speed	$\mathrm{N}_{\text {max }}$	min^{-1}	3000	3000	2000	2000		
*Rated torque	T_{R}	$\mathrm{N} \cdot \mathrm{m}$	35	48	70	95.5		
*Continuous stall torque	T_{S}	$\mathrm{N} \cdot \mathrm{m}$	37.3	54.9	80	95.5		
*Peak torque	T_{P}	$\mathrm{N} \cdot \mathrm{m}$	95	137	176	223		
*Rated current	I_{R}	Arms	47	52	60	66		
*Continuous stall current	I_{s}	Arms	47	57	66	66		
*Peak current	I_{P}	Arms	155	160	155	157		
Torque constant	K_{T}	$\mathrm{N} \cdot \mathrm{m} /$ Arms	0.830	1.03	1.29	1.54		
Voltage constant for each phase	$\mathrm{K}_{\mathrm{E} \phi}$	$\mathrm{mV} / \mathrm{min}^{-1}$	29.0	36.0	45.1	53.6		
Phase resistance	R_{ϕ}	Ω	0.018	0.017	0.015	0.016		
*Rated powerrate	Q_{R}	kW/s	168	240	260	360		
Inertia (Including Wiring INC)	J_{M}	$\mathrm{kg} \cdot \mathrm{m}^{2}\left(\mathrm{GD}^{2} / 4\right) \times 10^{-4}$	73	95	186	255		
Aluminium plate		mm	t20×540	t20×540	t20×540	t20×540		

AC100V Input specification

Servo Motor model Q2EA			04006D	04010D	05005D	05010D	05020D	07020D	
Servo Amplifier model RS1 \square			01*	01*	01*	01*	03*	03*	
*Rated output	P_{R}	kW	0.06	0.1	0.05	0.1	0.2	0.2	
*Rated speed	N_{R}	min^{-1}	3000	3000	3000	3000	3000	3000	
*Maximum speed	$\mathrm{N}_{\text {max }}$	min^{-1}	5000	5000	5000	5000	5000	5000	
*Rated torque	T_{R}	$\mathrm{N} \cdot \mathrm{m}$	0.191	0.318	0.159	0.318	0.637	0.637	
*Continuous stall torque	Ts	$N \cdot m$	0.216	0.353	0.167	0.353	0.686	0.686	
*Peak torque	TP	$\mathrm{N} \cdot \mathrm{m}$	0.65	1	0.518	1.03	2.1	2.1	
*Rated current	I_{R}	Arms	1.9	2.0	1.5	2.1	3.9	4.4	
*Continuous stall current	Is	Arms	1.9	2.2	1.5	2.3	4.1	4.6	
*Peak current	I_{P}	Arms	7.9	7	5.6	7.9	15.5	15.5	
Torque constant	K_{T}	$\mathrm{N} \cdot \mathrm{m} /$ Arms	0.117	0.188	0.12	0.169	0.184	0.162	
Voltage constant for each phase	$\mathrm{K}_{\mathrm{E} \phi}$	$\mathrm{mV} / \mathrm{min}^{-1}$	4.09	6.55	4.2	5.9	6.41	5.67	
Phase resistance	R_{ϕ}	Ω	1.5	1.9	1.8	1.22	0.64	0.5	
*Rated powerrate	Q_{R}	kW/s	6.46	11.8	3.78	7.8	16.2	10.6	
Inertia (Including Wiring INC)	J_{M}	$\mathrm{kg} \cdot \mathrm{m}^{2}\left(\mathrm{GD}^{2} / 4\right) \times 10^{-4}$	0.057	0.086	0.067	0.13	0.25	0.38	
Aluminium plate		mm	t6×305	t6×305	t6×305	t6×305	t6×305	t6×305	

- Constants are values at the time of installing on the aluminum board in the table. They indicate 'thickness' \times 'side of square'.
- Items with * and velocity - torque characteristics indicate values after temperature rise saturation. The others indicate values at $20^{\circ} \mathrm{C}$. Each value indicates TYP.

Materials Servo motor data sheet [Characteristics table]

Servo Motor model R2AA			04003F	04005F	04010F	06010F	06020F	08020F
Servo Amplifier model RS1■			01*	01*	01*	01*	01*	01*
*Rated output	P_{R}	kW	0.03	0.05	0.1	0.1	0.2	0.2
*Rated speed	N_{R}	min^{-1}	3000	3000	3000	3000	3000	3000
*Maximum speed	$\mathrm{N}_{\text {max }}$	min^{-1}	6000	6000	6000	6000	6000	6000
*Rated torque	T_{R}	$\mathrm{N} \cdot \mathrm{m}$	0.098	0.159	0.318	0.318	0.637	0.637
*Continuous stall torque	T_{S}	$\mathrm{N} \cdot \mathrm{m}$	0.108	0.167	0.318	0.353	0.686	0.686
*Peak torque	T_{P}	$\mathrm{N} \cdot \mathrm{m}$	0.37	0.59	1.18	1.13	2.2	2.2
*Rated current	I_{R}	Arms	0.51	0.67	0.81	0.86	1.5	1.5
*Continuous stall current	$\mathrm{I}_{\text {S }}$	Arms	0.56	0.69	0.81	0.86	1.6	1.5
*Peak current	I_{P}	Arms	2.15	2.8	3.3	3.5	5.6	4.8
Torque constant	K_{T}	$\mathrm{N} \cdot \mathrm{m} /$ Arms	0.201	0.246	0.424	0.375	0.476	0.516
Voltage constant for each phase	$\mathrm{K}_{\mathrm{E} \phi}$	$\mathrm{mV} / \mathrm{min}^{-1}$	7	8.6	14.8	13.1	16.6	18.0
Phase resistance	R_{ϕ}	Ω	12	9	9.3	4.8	2.7	2.3
*Rated powerrate	Q_{R}	kW/s	3.9	6.7	16	8.6	19	8
Inertia (Including Battery backup method absolute encoder)	J_{M}	$\mathrm{kg} \cdot \mathrm{m}^{2}\left(\mathrm{GD}^{2} / 4\right) \times 10^{-4}$	0.028	0.0409	0.066	0.120	0.222	0.523
Aluminium plate		mm	t6×250	t6×250	t6×250	t6×250	t6×250	t6×250

Servo Motor model R2AA			06040F	08040F	08075F	B8100F	13050D	13120D	13200D	22500L
Servo Amplifier model RS1■			03*	03*	03*	05*	03^{*}	05*	10*	15*
*Rated output	P_{R}	kW	0.4	0.4	0.75	1.0	0.55	1.2	2.0	5.0
*Rated speed	N_{R}	min-1	3000	3000	3000	3000	2000	2000	2000	2000
*Maximum speed	$\mathrm{N}_{\text {max }}$	min-1	6000	6000	6000	6000	5000	5000	5000	4000
*Rated torque	T_{R}	$\mathrm{N} \cdot \mathrm{m}$	1.27	1.27	2.39	3.18	2.6	5.7	9.5	24
*Continuous stall torque	T_{S}	$\mathrm{N} \cdot \mathrm{m}$	1.37	1.37	2.55	3.92	2.6	6.0	12	32
*Peak torque	T_{P}	$\mathrm{N} \cdot \mathrm{m}$	4.8	4.4	8.5	14.3	7.0	16	30	75
*Rated current	I_{R}	Arms	2.8	2.6	4.6	6.0	5.2	9.1	14.3	22.0
*Continuous stall current	$\mathrm{I}_{\text {S }}$	Arms	2.8	2.6	4.6	6.8	5.2	9.3	17.5	34.0
*Peak current	I_{P}	Arms	10.8	8.9	15.5	25.7	15.5	25.4	45.5	83.0
Torque constant	K_{T}	$\mathrm{N} \cdot \mathrm{m} /$ Arms	0.524	0.559	0.559	0.582	0.53	0.65	0.7	1.0
Voltage constant for each phase	$\mathrm{K}_{\mathrm{E} \phi}$	$\mathrm{mV} / \mathrm{min}-1$	18.3	19.5	19.5	20.3	18.5	22.7	24.3	34.9
Phase resistance	R_{ϕ}	Ω	1.36	0.93	0.4	0.44	0.39	0.23	0.11	0.047
*Rated powerrate	Q_{R}	kW/s	39	16	31	42	22	54	74	105
Inertia (Including Battery backup method absolute encoder)	J_{M}	$\begin{gathered} \mathrm{kg} \cdot \mathrm{~m} 2(\mathrm{GD} 2 / 4) \\ \times 10-4 \end{gathered}$	0.415	1.043	1.823	2.383	3.103	6.003	12.203	55
Aluminium plate		mm	t6×250	t6×250	t6×250	t12 $\times 305$	120×305	20 $\times 400$	120×470	120×470

AC100V Input specification

Servo Motor model R2EA			04003F	04005F	04008F	06010F	06020F
Servo Amplifier model RS1ם			01*	01*	01*	01*	03*
*Rated output	P_{R}	kW	0.03	0.05	0.08	0.1	0.2
*Rated speed	N_{R}	min^{-1}	3000	3000	3000	3000	3000
*Maximum speed	$\mathrm{N}_{\text {max }}$	min^{-1}	6000	6000	6000	6000	6000
*Rated torque	T_{R}	$\mathrm{N} \cdot \mathrm{m}$	0.098	0.159	0.255	0.318	0.637
*Continuous stall torque	T_{S}	$\mathrm{N} \cdot \mathrm{m}$	0.108	0.167	0.255	0.318	0.686
*Peak torque	T_{P}	$\mathrm{N} \cdot \mathrm{m}$	0.37	0.59	0.86	1.0	2.2
*Rated current	I_{R}	Arms	0.94	1.2	1.3	1.7	3.1
*Continuous stall current	$\mathrm{I}_{\text {S }}$	Arms	1.0	1.3	1.3	1.7	3.2
*Peak current	I_{P}	Arms	3.7	4.9	4.5	5.6	11.9
Torque constant	K_{T}	$\mathrm{N} \cdot \mathrm{m} /$ Arms	0.116	0.142	0.22	0.206	0.224
Voltage constant for each phase	$\mathrm{K}_{\mathrm{E} \phi}$	$\mathrm{mV} / \mathrm{min}^{-1}$	4.04	4.97	7.7	7.2	7.82
Phase resistance	R_{ϕ}	Ω	4.0	3.0	2.9	1.5	0.6
*Rated powerrate	Q_{R}	kW/s	3.9	6.7	10	8.6	19
Inertia (Including Battery backup method absolute encoder)	J_{M}	$\begin{aligned} & \mathrm{kg} \cdot \mathrm{~m}^{2}\left(\mathrm{GD}^{2} / 4\right) \\ & \times 10^{-4} \end{aligned}$	0.028	0.0409	0.066	0.120	0.222
Aluminium plate		mm	t6×250	t6×250	t6×250	t6×250	t6×250

- Constants are values at the time of installing on the aluminum board in the table. They indicate 'thickness' \times 'side of square'.
- Items with * and velocity - torque characteristics indicate values after temperature rise saturation.

The others indicate values at $20^{\circ} \mathrm{C}$. Each value indicates TYP.

Materials Servo motor data sheet [velocity-Torgue characteristics]

Q1AA motor velocity-torque characteristics charts indicate the values when AC200V 3-phase amplifier connected. Instantaneous zone decreases when amplifier power supply is 200 V or less.
Please contact us if your amplifier power supply is single-phase AC200V.

Materials Servo motor data sheet [velocity-Torgue characteristics]

Velocity - torque characteristic Q1AA12300D (3kW)

Velocity - torque characteristic Q1AA12100D (1kW)

Velocity - torque characteristic Q1AA13300D (3kW)

Velocity - torque characteristic Q1AA18450M (4.5kW)

Velocity - torque characteristic Q1AA12200D (2kW)

Velocity - torque characteristic Q1AA13400D (4kW)

Materials Servo motor data sheet [velocity-Torgue characteristics]

Q1EA motor velocity-torque characteristics charts indicate the values when single-phase AC100V amplifier connected. Instantaneous zone decreases when amplifier power supply is 100 V or less.

Materials Servo motor data sheet [velocity-Torgue characteristics]

Materials-47

Velocity - torque characteristic Q2AA18550R (5.5kW)

Velocity - torque characteristic Q2AA22450R (4.5kW)

Velocity - torque characteristic
Q2AA18550H(5.5kW)

Velocity - torque characteristic Q2AA22250H (2.5kW)

Velocity - torque characteristic Q2AA22550B (5.5kW)

Velocity - torque characteristic
Q2AA18750L(7.5kW)

Velocity - torque characteristic Q2AA22350H (3.5kW)

Velocity - torque characteristic Q2AA22700S (7kW)

Q2AA2211KV(11kW)

Materials Servo motor data sheet [velocity-Torgue characteristics]

Q2EA Motor speed-torque characteristics indicate the values in combination with operation amplifier for single phase when amplifier power supply is AC100V. Instant domain decreases when amplifier power supply is below 100V.

Velocity - torque characteristics Q2EA05020D (200W)

Materials Servo motor data sheet rvelocity-Torque characteristics]

R2AA motor velocity-torque characteristics charts show the values when 3-phase AC200V amplifier connected. When power supply voltage is 200 V or less, the instantaneous zone decreases. If your amplifier power supply is single-phase AC 200V, please contact us.

Materials Servo motor data sheet rvelocity-Torgue characteristics]

R2AA motor velocity-torque characteristics charts indicate the values when 3-phase 200V amplifier connected. Instantaneous zone decreases when amplifier power supply is 200 V or less.

R2EA motor velocity-torque characteristics charts indicate the values when amplifier power supply connected is AC200V, 3-phase.
When power voltage is 200 V or less, the instantaneous zone decreases. Please contact us if your amplifier power supply is AC200V single-phase.

- Degree of decrease rating: R2AA motor with oil seal and brake

For motor with oil seal and brake, apply the following decrease ratings to continuous zone, considering increase in temperature.

Brake seal	No oil seal	With oil seal
No brake	No decrease rating	Decrease rating 2
With brake	Decrease rating 1	Decrease rating 2

Decrease			
rating 1	Servo Motor	R2AA	
Model NO.	R2AAA		
	De4010F	06040 F	
	Degree of		
decrease rating $\%$	90		

Decrease rating 2	Servo Motor Model NO.	R2AA 04005F	R2AA 04010F	R2AA 06040F	R2AA 08075F	R2EA 04005F
	Degree of decrease rating \%	90	85	80	90	90

The followings show overload characteristics of Q1AA motor.

Overload characteristic
Q1AA10150D (1.5kW)

Overload characteristic Q1AA04010D (100W)

Overload characteristic Q1AA10200D (2kW)

Materials Servo motor data sheet

The followings show overload characteristics of Q1AA motor.

The followings show overload characteristics of Q1EA motor.

Overload characteristic Q1AA13400D (4kW)

Overload characteristic Q1AA18750H (7.5kW)

The followings show overload characteristics of Q1EA motor.

Overload characteristic
Q2AA05010D (100W)

Output current ratio (I/IR)
Overload characteristic
Q2AA07030D (300W)

Overload characteristic
Q2AA05020D (200W)

Overload characteristic Q2AA07040D (400W)

Overload characteristic Q2AA07050D (500W)

The followings show overload characteristics of Q2AA motor.

The followings show overload characteristics of Q2AA motor.

Overload characteristic Q2AA22700S (7kW)

Output current ratio (I/R)

Output current ratio (I/IR)

The followings show overload characteristics of Q2EA motor.

Overload characteristic Q2EA04010D (100W)

Overload characteristic Q2EA05005D (50W)

The followings show overload characteristics of Q2EA motor.

Output current ratio (I/IR)
Overload characteristic R2AA06020F (200W)

Output current ratio (I/IR)
Overload characteristic R2AA08040F (400W)

Output current ratio (I/IR)
Overload characteristic
R2AA08020F (200W)

Output current ratio (I/IR)
Overload characteristic R2AA08075F (750W)

Materials Servo motor data sheet

The followings show overload characteristics of R2AA motor.

The followings show overload characteristics of R2EA motor.

Overload characteristic R2EA04008F (80W)

Output current ratio (I/IR)

Input-output connector
Connector table for AC 200V input type

Application	Model number	Contents	Manufacturer	Manufacturer's model number
Single connector	AL-Y0004290-02	CN1 Plug	JST Mfg Co., Ltd	MUF-PK10K-X
	AL-00385596	CN2	3M Japan Limited	10120-3000PE
		Plug and housing		10320-52A0-008
	AL-00329461-01	CNA plug	Phoenix Contact Co. Ltd.	MSTB2.5/5-STF-5.08
	AL-Y0000988-01	CNB plug	Phoenix Contact Co. Ltd.	IC2.5/6-STF-5.08
	AL-00329458-01	CNC plug	Phoenix Contact Co. Ltd.	IC2.5/3-STF-5.08
High voltage circuit Connector set	AL-00416792	CNA,CNB, CNC plug	Phoenix Contact Co. Ltd.	MSTB2.5/5-STF-5.08
				IC2.5/3-STF-5.08

*CNB is installed in the servo amplifier. It is not included in the high-voltage circuit connector set.
AC100V input type

Application	Model number	Contents	Manufacturer	Manufacturer's model number
Single connector	AL-00329461-02	CNA plug	Phoenix Contact Co. Ltd.	MSTB2.5/4-STF-5.08

Setup softwear computer connecting cable

Model number	Remarks
AL-00490833-01	Dedicated cable

■ Metal mounting fittings
The servo amplifiers of RS■01，RS■03，RSロ05 have metal mounting fittings of old compatible（PY2 series ） available．
－Metal mounting fittings table for RSロ01～05

Servo amplifier model number	Mounting Position	Model	Contents
RS1口01	Front	AL－00582788－01	Fitting metals： 1 Tightning screw： 6
RS1口03	Front	AL－00582789－01	Fitting metals： 1 Tightning screw： 2
RS1口01，RS1口03	Back	AL－00582791－01	Fitting metals： 1 Tightning screw： 2
RS1口05	Front	AL－00582790－01	Fitting metals： 1 Tightning screw： 6
	Back	AL－00582792－01	Fitting metals： 1 Tightning screw： 2

Metal mounting fittings of this option employ three－number chromate plating treatment．
（Surface color：It is different from blue－silver／body color．）
－AL－00582788－01

- AL-00582789-01

- AL-00582791-01

- AL-00582790-01

- AL-00582792-01

Monitor box

- Monitor box and dedicated cable

Model number	Remarks
Q-MON-1	Monitor box + Dedicated cables (2 cables)

Two dedicated cables blow come with this monitor box.

- Dedicated cables

Model number	Remarks
AL-00496726-01	Dedicated cable (1 cable)

Terminal name	Function
1A	Analog monitor 1
1B	Analog monitor 2
2A	GND
2 B	Degital monitor

	Manufacturer mdel number	Manufacturer
Connector	LY10-DC4	Japan Aviation Electronics Industry, Ltd.
Contact	LY10-C1-1-10000	Japan Aviation Electronics Industry, Ltd.

- Lithium battery

Model number	Remarks
AL-00494635-01	ER3VLY

	Manufacturer mdel number	Mass: 0.02kg
Connector	IL-2S-S3L-(N)	Japan Aviation Electronics Industry, Ltd.
Contact	IL-C2-1-10000	Japan Aviation Electronics Industry, Ltd.
Battery	ER3VLY	 SERVICES CORPORATION

- EMC countermeasure kit

Model number	Remarks
QS-EMC-KIT1	Noise filter: 3SUP-HK30-ER-6B
	Toroidal core: 251-211

Model number: 3SUP-HK30-ER-6B
unit
general allowance: $\pm 1.5 \mathrm{~mm}$

Mass:2.5kg
Model number: 251-11

Encoder clear / Alarm reset method

'Encoder clear / alarm reset method' vary according to the encoder you use. Any alarms will not be reset under the proceure of the list below unless any alarm factors are removed by correction.

- Asynchronous encoder

Alarm code	Name		Encoder type	Encoder clear and alarm reset method
A2	Battery abnormal	\rightarrow	PA035C	After'Encoder clear input' \Rightarrow 'Alarm reset input'
		RA062C	-	
A3	Encoder overheat	\rightarrow	PA035C	'Alarm reset input'
	A5	Abnormal encoder3	\rightarrow	RA062C
		RA062C	-	
A6	Abnormal encoder4	\rightarrow	PA035C	RA062C

- Manchester encoder

Alarm code	Name		Encoder type	Encoder clear and alarm reset method
A1	Encoder abnormal 1	\rightarrow	RA062M	Power restoration
A2	Battery abnormal	\rightarrow	ABS-E	After'Encoder clear input' \rightarrow 'Alarm reset input''
B2	Encoder abnormal 2	\rightarrow	RA062M	Power restoration

SANYO DENKI CO., LTD.

3-33-1, Minami-Otsuka, Toshima-ku, Tokyo, 170-8451, Japan
SANYO DENKI EUROPE SA.
P.A. Paris Nord II, 48 Allée des Erables-VILLEPINTE, BP. 57286 , F-95958 ROISSY CDG Cedex, France

SANYO DENKI AMERICA, INC.

468 Amapola Avenue Torrance, CA 90501, U.S.A.

SANYO DENKI SHANGHAI CO., LTD.

Room 2106-2109, Bldg A, Far East International Plaza, No.319, Xianxia Road, Shanghai, 200051, China

Beijing Branch

http://www.sanyodenki.com

SANYO DENKI (H.K.) CO., LIMITED
Room 2305, 23/F, South Tower, Concordia Plaza, 1 Science Museum Rd., TST East, Kowloon, Hong Kong
Tianjin Representative Office
Room AB 16th Floor TEDA Building, No. 256 Jie Fang Nan Road, Hexi District, Tianjin 300042 China Chengdu Representative Office

TEL: +81 359271020

TEL: +33 148632661

TEL: +1 3107835400

TEL: +86 2162351107

TEL: +86 1065222160
05 China

Room2105B, Block A, Times Plaza, 2 Zongfu Road, Jinjiang District, Chengdu, 610016 China
SANYO DENKI TAIWAN CO., LTD.
N-711, 7F, Chia Hsin 2nd Bldg., No.96, Sec.2, Zhongshan N. Rd., Taipei 10449, Taiwan (R.O.C.)
SANYO DENKI SINGAPORE PTE.LTD.
TEL: +852 23126250
TEL: +86 2223201186

TEL: +86 2886616901

988 Toa Payoh North, \#04-05/06/07/08, Singapore 319002
Indonesia Representative Office TEL: +62 212523202

Summitmas II 4th Floor, JI. Jend. Sudirman Kav.61-62, Jakarta 12190, Indonesia

SANYO DENKI GERMANY GmbH

TEL: +49 6196761130
Frankfurter Strasse 92, 65760 Eschborn, Germany

SANYO DENKI KOREA CO., LTD.	TEL: +82 27735623
9F, Sunhwa B/D 89, Seosomun-ro, Jung-gu, Seoul, 100-731, Korea	TEL: +82 517965151

Busan Branch
TEL: +82 517965151
8F, CJ Korea Express Bldg., 119, Daegyo-ro, Jung-gu, Busan, 600-016, Korea
SANYO DENKI (Shenzhen) CO., LTD.
TEL: +86 75533373868
2F 02-11, Shenzhen International Chamber of Commerce Tower, No. 168 Fuhua 3 Road, Futian District, Shenzhen, China 518048

388 Exchange Tower, 25th Floor, Unit 2501-1, Sukhumvit Road, Klongtoey, Klongtoey, Bangkok 10110 Thailand

[^0]: If inductive noise enters the input signals or the power circuit, it can cause a malfunction. If there is a possibility of noise, inspect the line wiring and take appropriate noise prevention measures. A noise filter should be installed to protect the servo amplifier.

[^1]: *Make sure to install diode as a surge absorber when connecting induction load such as relay to output 8 on CN1.
 Please carefully install diode so as not to connect polarity of diode. Failure to do this causes servo amplifier malfunction.

[^2]: (a)
 "Encoder clearing and alarm resetting methods" vary depending on the encoder in use
 Refer to page 53 "Materials; Encoder Clear".

 Note) V means the cause number with high possibility.
 (V) means the cause number with middle possibility.

[^3]: Note) V means the cause number with high possibility.

[^4]: (0)

 If the battery is replaced while the control power is OFF, multiple rotation counter (position data) of the absolute encoder may be instable. When the amplifier control power is turned ON in this status, an alarm (battery error) may be issued. For this, execute encoder clear and alarm reset to release the alarm status. Also, absolute encoder position data may be instable. Check and adjust the relations between position data and machine coordinate system.

[^5]: (t) Select regeneration resistance by calculating regeneration power PM from the operation pattern, as per the calculation method of regeneration power PM.

 #### Abstract

 (1) Install the external regeneration resistor on equipment, and measure the temperature of the external regeneration resistor by the operating condition that the regeneration electric power PM becomes the maximum. Then do sufficient mounting check of alarm not being generated. In addition, it takes 1 to 2 hours until the temperature of the external regeneration resistor is saturated. Since insulated degradation, corrosion, etc. may arise in the place where corrosive gas has occurred, or a place with much dust, be careful of an attachment place.

[^6]: For the EMC Directives, tests are performed by general installation and countermeasure methods, in our company as machines and configurations differ depending on customers' needs.

 8
 This servo amplifier has been authorized to display CE marking based on the recognition certificate issued by a separate, third-party certifying authority. Accordingly, customers are instructed to perform the final conformity tests for all instruments and devices in use.

